85 research outputs found

    The role of whole blood transfusions in civilian trauma: A review of literature in military and civilian trauma

    Get PDF
    Resuscitation techniques for the management of adult trauma patients have evolved over the 20th century. Whole blood transfusions were previously used as the standard of care, whereas blood component therapy is the current method employed across most trauma centers across the United States. Prior to the transition, no studies were conducted to show improved efficacy of hemostatic potential in trauma patients. Recent conflicts in Iraq and Afghanistan have challenged the dogma that whole blood transfusions are not the standard of care and have shown potential as the superior transfusion product for adult trauma patients. The purpose of this review is to provide a comprehensive review and elucidate if whole blood transfusions have a role in civilian trauma patients based upon recent military medical literature and civilian pilot studies using whole blood transfusions

    Fruit gardens enhance mammal diversity and biomass in a Southeast Asian rainforest

    Get PDF
    Protected areas are frequently inhabited by people and conservation must be integrated with traditional management systems. Cultivation of fruit gardens is a low-impact agroforestry technique which alters the structure and composition of forest stands and has the potential to thereby influence animal communities. This is of particular interest in the rainforests of Southeast Asia, where limited fruit availability between intermittent mast fruiting events results in low mammal densities. We assessed how agroforestry practises of an indigenous community affect terrestrial mammal abundance, diversity and assemblage composition within Krau Wildlife Reserve, Pahang, Malaysia. We used baited camera traps to compare mammal abundance and diversity between seven fruit gardens and eight control sites. Fruit gardens contained similar species richness and abundance levels but higher diversity and almost threefold higher mammal biomass. Fruit gardens contained five times as many fruit-producing trees and a positive correlation was found between the number of fruit trees and total mammal biomass. Mammal community composition differed between the two habitats, with fruit gardens attracting nine species of conservation concern. These results suggest that traditional agroforestry systems may provide additional resources for mammals and therefore their net effects should be considered in conservation policy

    Comparing tropical forest tree size distributions with the predictions of metabolic ecology and equilibrium models

    Get PDF
    Tropical forests vary substantially in the densities of trees of different sizes and thus in above-ground biomass and carbon stores. However, these tree size distributions show fundamental similarities suggestive of underlying general principles. The theory of metabolic ecology predicts that tree abundances will scale as the -2 power of diameter. Demographic equilibrium theory explains tree abundances in terms of the scaling of growth and mortality. We use demographic equilibrium theory to derive analytic predictions for tree size distributions corresponding to different growth and mortality functions. We test both sets of predictions using data from 14 large-scale tropical forest plots encompassing censuses of 473 ha and \u3e 2 million trees. The data are uniformly inconsistent with the predictions of metabolic ecology. In most forests, size distributions are much closer to the predictions of demographic equilibrium, and thus, intersite variation in size distributions is explained partly by intersite variation in growth and mortality. © 2006 Blackwell Publishing Ltd/CNRS

    Nonrandom processes maintain diversity in tropical forests

    Get PDF
    An ecological community\u27s species diversity tends to erode through time as a result of stochastic extinction, competitive exclusion, and unstable host-enemy dynamics. This erosion of diversity can be prevented over the short term if recruits are highly diverse as a result of preferential recruitment of rare species or, alternatively, if rare species survive preferentially, which increases diversity as the ages of the individuals increase. Here, we present census data from seven New and Old World tropical forest dynamics plots that all show the latter pattern. Within local areas, the trees that survived were as a group more diverse than those that were recruited or those that died. The larger (and therefore on average older) survivors were more diverse within local areas than the smaller survivors. When species were rare in a local area, they had a higher survival rate than when they were common, resulting in enrichment for rare species and increasing diversity with age and size class in these complex ecosystems

    Testing metabolic ecology theory for allometric scaling of tree size, growth and mortality in tropical forests

    Get PDF
    The theory of metabolic ecology predicts specific relationships among tree stem diameter, biomass, height, growth and mortality. As demographic rates are important to estimates of carbon fluxes in forests, this theory might offer important insights into the global carbon budget, and deserves careful assessment. We assembled data from 10 old-growth tropical forests encompassing censuses of 367 ha and > 1.7 million trees to test the theory's predictions. We also developed a set of alternative predictions that retained some assumptions of metabolic ecology while also considering how availability of a key limiting resource, light, changes with tree size. Our results show that there are no universal scaling relationships of growth or mortality with size among trees in tropical forests. Observed patterns were consistent with our alternative model in the one site where we had the data necessary to evaluate it, and were inconsistent with the predictions of metabolic ecology in all forests

    Assessing Evidence for a Pervasive Alteration in Tropical Tree Communities

    Get PDF
    In Amazonian tropical forests, recent studies have reported increases in aboveground biomass and in primary productivity, as well as shifts in plant species composition favouring fast-growing species over slow-growing ones. This pervasive alteration of mature tropical forests was attributed to global environmental change, such as an increase in atmospheric CO2 concentration, nutrient deposition, temperature, drought frequency, and/or irradiance. We used standardized, repeated measurements of over 2 million trees in ten large (16–52 ha each) forest plots on three continents to evaluate the generality of these findings across tropical forests. Aboveground biomass increased at seven of our ten plots, significantly so at four plots, and showed a large decrease at a single plot. Carbon accumulation pooled across sites was significant (+0.24 MgC ha−1 y−1, 95% confidence intervals [0.07, 0.39] MgC ha−1 y−1), but lower than reported previously for Amazonia. At three sites for which we had data for multiple census intervals, we found no concerted increase in biomass gain, in conflict with the increased productivity hypothesis. Over all ten plots, the fastest-growing quartile of species gained biomass (+0.33 [0.09, 0.55] % y−1) compared with the tree community as a whole (+0.15 % y−1); however, this significant trend was due to a single plot. Biomass of slow-growing species increased significantly when calculated over all plots (+0.21 [0.02, 0.37] % y−1), and in half of our plots when calculated individually. Our results do not support the hypothesis that fast-growing species are consistently increasing in dominance in tropical tree communities. Instead, they suggest that our plots may be simultaneously recovering from past disturbances and affected by changes in resource availability. More long-term studies are necessary to clarify the contribution of global change to the functioning of tropical forests

    Global patterns of interaction specialization in bird-flower networks

    Get PDF
    Aim Among the world's three major nectar-feeding bird taxa, hummingbirds are the most phenotypically specialized for nectarivory, followed by sunbirds, while the honeyeaters are the least phenotypically specialized taxa. We tested whether this phenotypic specialization gradient is also found in the interaction patterns with their floral resources. Location Americas, Africa, Asia and Oceania/Australia. Methods We compiled interaction networks between birds and floral resources for 79 hummingbird, nine sunbird and 33 honeyeater communities. Interaction specialization was quantified through connectance (C), complementary specialization (H-2), binary (Q(B)) and weighted modularity (Q), with both observed and null-model corrected values. We compared interaction specialization among the three types of bird-flower communities, both independently and while controlling for potential confounding variables, such as plant species richness, asymmetry, latitude, insularity, topography, sampling methods and intensity. Results Hummingbird-flower networks were more specialized than honeyeater-flower networks. Specifically, hummingbird-flower networks had a lower proportion of realized interactions (lower C), decreased niche overlap (greater H-2) and greater modularity (greater Q(B)). However, we found no significant differences between hummingbird- and sunbird-flower networks, nor between sunbird- and honeyeater-flower networks. Main conclusions As expected, hummingbirds and their floral resources have greater interaction specialization than honeyeaters, possibly because of greater phenotypic specialization and greater floral resource richness in the New World. Interaction specialization in sunbird-flower communities was similar to both hummingbird-flower and honeyeater-flower communities. This may either be due to the relatively small number of sunbird-flower networks available, or because sunbird-flower communities share features of both hummingbird-flower communities (specialized floral shapes) and honeyeater-flower communities (fewer floral resources). These results suggest a link between interaction specialization and both phenotypic specialization and floral resource richness within bird-flower communities at a global scale.CAPES Foundation [8105/2014-6, 8012/2014-08]; CNPq [309453/2013-5, 445405/2014-7]; Czech Science Foundation [14-36098G]; British Ornithologists' Union; Wolfson College, University of Oxford; FAPESP [2015/21457-4]; FAPEMIG; FUNDECT; Oticon Fonden Denmark; Danish Council for Independent Research Natural Sciences; University of Aarhus; CACyPI-Uatx-GK; FACEPE; OeAD; FAPESB; CONICIT; MICIT; CCT; UNED; OTS; DAAD; DFG; Hesse's Ministry of Higher Education, Research, and the ArtsSCI(E)ARTICLE81891-19104
    corecore