11 research outputs found

    Associations between sleep disturbance, cognitive functioning and work disability in Bipolar Disorder

    Get PDF
    Bipolar Disorder (BD) is associated with impairment in a number of areas including poor work functioning, often despite the remission of mood symptoms. The present study aimed to examine the role of sleep disturbance and cognitive functioning in occupational impairment in BD. Twenty-four euthymic BD participants and 24 healthy control participants completed a week of prospective assessment of sleep disruption via self-report and actigraphy, a battery of neuropsychological tests of executive functioning, working memory, and verbal learning, and assessments of work functioning. BD participants experienced significantly poorer cognitive functioning as well as greater months of unemployment and greater incidence of being fired than controls. Moderation analyses revealed that both poor sleep and cognitive functioning were associated with poor work performance in BD participants, but not control participants. Sleep and cognitive functioning may be impaired in euthymic BD and are associated with poor work functioning in this population. More research should be conducted to better understand how sleep and cognitive functioning may interact in BD

    Non-motor Predictors of Freezing of Gait in Parkinson’s Disease

    Full text link
    Background The etiology of freezing of gait in Parkinson’s disease (PD) is yet to be clarified. Non-motor risk factors including cognitive impairment, sleep disturbance and mood disorders have been shown in freezing of gait. Research question We aimed to determine the predictive value of non-motor features in freezing of gait development. Methods Data were obtained from the Parkinson’s Progression Markers Initiative. Fifty PD patients with self-reported freezing of gait, and 50 PD patients without freezing of gait at the fourth year visit were included. Groups were matched for Movement Disorders Society-Unified Parkinson’s Disease Rating Scale Part III scores. Several cognitive and non-cognitive tests were used for non-motor features at baseline and over time. Executive function, visuospatial function, processing speed, learning and memory tests were used for cognition. Non-cognitive tests included sleepiness, REM sleep behavior disorder, depression and anxiety scales. Results Patients with freezing of gait had higher scores on sleepiness, REM sleep behavior disorder, depression and anxiety scales. However, predictor model analysis revealed that baseline processing speed, learning and sleepiness scores were predictive of self-reported freezing of gait development over time. Significance Our findings suggest that specific cognitive deficits and sleep disorders are predictive of future freezing of gait. These features may be helpful in identifying underlying networks in freezing of gait and should be further investigated with neuroimaging studies

    Food Restriction Alters Neuronal Morphology in the Hypothalamic Ventromedial Nucleus of Male Rats

    No full text
    Several lines of evidence have implicated the hypothalamic ventromedial nucleus (VMH) in the control of caloric homeostasis. For example, the activity of VMH neurons depends on energy availability. We tested the hypothesis that energy balance may involve the remodeling of the dendritic arbor of VMH neurons. We compared two groups of animals: one group had ad libitum access to food, and the other experienced 10-d restricted access to food. As expected, the food-deprived group lost body weight and had reduced levels of glucose, insulin, and leptin. VMH neurons were visualized after Golgi impregnation, and dendrite length was measured. Food deprivation had differential effects on VMH neurons. In particular, within the ventrolateral VMH, for neurons with long primary dendrites (LPDs) that extended in the lateral, but not medial, direction, the LPDs were 31% shorter. These same neurons exhibited a 32% reduction in the number of other dendrites without a change in soma size. In contrast, within the dorsomedial VMH, for neurons with medially, but not laterally, extended LPDs, the soma area was reduced by 28%. However, neurons in the dorsomedial VMH did not display a change in the length or number of dendrites, regardless of LPD direction. Thus, although structural changes during calorie depletion occur in both the dorsomedial and ventrolateral VMH, only the latter exhibits a remodeled dendritic arbor. These results also suggest that the direction of the LPD may be an important marker of neuronal function in the VMH
    corecore