176 research outputs found

    Investigating the clinico-anatomical dissociation in the behavioral variant of Alzheimer disease

    Get PDF
    BACKGROUND: We previously found temporoparietal-predominant atrophy patterns in the behavioral variant of Alzheimer's disease (bvAD), with relative sparing of frontal regions. Here, we aimed to understand the clinico-anatomical dissociation in bvAD based on alternative neuroimaging markers. METHODS: We retrospectively included 150 participants, including 29 bvAD, 28 "typical" amnestic-predominant AD (tAD), 28 behavioral variant of frontotemporal dementia (bvFTD), and 65 cognitively normal participants. Patients with bvAD were compared with other diagnostic groups on glucose metabolism and metabolic connectivity measured by [18F]FDG-PET, and on subcortical gray matter and white matter hyperintensity (WMH) volumes measured by MRI. A receiver-operating-characteristic-analysis was performed to determine the neuroimaging measures with highest diagnostic accuracy. RESULTS: bvAD and tAD showed predominant temporoparietal hypometabolism compared to controls, and did not differ in direct contrasts. However, overlaying statistical maps from contrasts between patients and controls revealed broader frontoinsular hypometabolism in bvAD than tAD, partially overlapping with bvFTD. bvAD showed greater anterior default mode network (DMN) involvement than tAD, mimicking bvFTD, and reduced connectivity of the posterior cingulate cortex with prefrontal regions. Analyses of WMH and subcortical volume showed closer resemblance of bvAD to tAD than to bvFTD, and larger amygdalar volumes in bvAD than tAD respectively. The top-3 discriminators for bvAD vs. bvFTD were FDG posterior-DMN-ratios (bvADbvFTD, area under the curve [AUC] range 0.85-0.91, all p tAD), MRI anterior-DMN-ratios (bvAD<tAD), FDG anterior-DMN-ratios (bvAD<tAD, AUC range 0.71-0.84, all p < 0.05). CONCLUSIONS: Subtle frontoinsular hypometabolism and anterior DMN involvement may underlie the prominent behavioral phenotype in bvAD

    Determinants of cognitive and brain resilience to tau pathology: a longitudinal analysis

    Get PDF
    Mechanisms of resilience against tau pathology in individuals across the Alzheimer's disease spectrum are insufficiently understood. Longitudinal data are necessary to reveal which factors relate to preserved cognition (i.e. cognitive resilience) and brain structure (i.e. brain resilience) despite abundant tau pathology, and to clarify whether these associations are cross-sectional or longitudinal. We employed a longitudinal study design to investigate the role of several demographic, biological and brain structural factors in yielding cognitive and brain resilience to tau pathology as measured with PET. In this multicenter study, we included 366 amyloid-β-positive individuals with mild cognitive impairment or Alzheimer's disease-dementia with baseline [18F]flortaucipir-PET and longitudinal cognitive assessments. A subset (n = 200) additionally underwent longitudinal structural MRI. We used linear mixed-effects models with global cognition and cortical thickness as dependent variables to investigate determinants of cognitive resilience and brain resilience, respectively. Models assessed whether age, sex, years of education, APOE-ε4 status, intracranial volume (and cortical thickness for cognitive resilience models) modified the association of tau pathology with cognitive decline or cortical thinning. We found that the association between higher baseline tau-PET levels (quantified in a temporal meta-region of interest) and rate of cognitive decline (measured with repeated Mini-Mental State Examination) was adversely modified by older age (Stβinteraction = -0.062, P = 0.032), higher education level (Stβinteraction = -0.072, P = 0.011) and higher intracranial volume (Stβinteraction = -0.07, P = 0.016). Younger age, higher education and greater cortical thickness were associated with better cognitive performance at baseline. Greater cortical thickness was furthermore associated with slower cognitive decline independent of tau burden. Higher education also modified the negative impact of tau-PET on cortical thinning, while older age was associated with higher baseline cortical thickness and slower rate of cortical thinning independent of tau. Our analyses revealed no (cross-sectional or longitudinal) associations for sex and APOE-ε4 status on cognition and cortical thickness. In this longitudinal study of clinically impaired individuals with underlying Alzheimer's disease neuropathological changes, we identified education as the most robust determinant of both cognitive and brain resilience against tau pathology. The observed interaction with tau burden on cognitive decline suggests that education may be protective against cognitive decline and brain atrophy at lower levels of tau pathology, with a potential depletion of resilience resources with advancing pathology. Finally, we did not find major contributions of sex to brain nor cognitive resilience, suggesting that previous links between sex and resilience might be mainly driven by cross-sectional differences

    Diagnostic Accuracy of Magnetic Resonance Imaging Measures of Brain Atrophy Across the Spectrum of Progressive Supranuclear Palsy and Corticobasal Degeneration

    Full text link
    The accurate diagnosis of progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD) is hampered by imperfect clinical-pathological correlations.To assess and compare the diagnostic value of the magnetic resonance parkinsonism index (MRPI) and other magnetic resonance imaging-based measures of cerebral atrophy to differentiate between PSP, CBD, and other neurodegenerative diseases.This prospective diagnostic study included participants with 4-repeat tauopathies (4RT), PSP, CBD, other neurodegenerative diseases and available MRI who appeared in the University of California, San Francisco, Memory and Aging Center database. Data were collected from October 27, 1994, to September 29, 2019. Data were analyzed from March 1 to September 14, 2021.The main outcome of this study was the neuropathological diagnosis of PSP or CBD. The clinical diagnosis at the time of the MRI acquisition was noted. The imaging measures included the MRPI, cortical thickness, subcortical volumes, including the midbrain, pons, and superior cerebellar peduncle volumes. Multinomial logistic regression models (MLRM) combining different cortical and subcortical regions were defined to discriminate between PSP, CBD, and other pathologies. The areas under the receiver operating characteristic curves (AUROC) and cutoffs were calculated to differentiate between PSP, CBD, and other diseases.Of the 326 included participants, 176 (54%) were male, and the mean (SD) age at MRI was 64.1 (8.0) years. The MRPI showed good diagnostic accuracy for the differentiation between PSP and all other pathologies (accuracy, 87%; AUROC, 0.90; 95% CI, 0.86-0.95) and between 4RT and other pathologies (accuracy, 80%; AUROC, 0.82; 95% CI, 0.76-0.87), but did not allow the discrimination of participants with CBD. Its diagnostic accuracy was lower in the subgroup of patients without the canonical PSP-Richardson syndrome (PSP-RS) or probable corticobasal syndrome (CBS) at MRI. MLRM combining cortical and subcortical measurements showed the highest accuracy for the differentiation between PSP and other pathologies (accuracy, 95%; AUROC, 0.98; 95% CI, 0.97-0.99), CBD and other pathologies (accuracy, 83%; AUROC, 0.86; 95% CI, 0.81-0.91), 4RT and other pathologies (accuracy, 89%; AUROC, 0.94; 95% CI, 0.92-0.97), and PSP and CBD (accuracy, 91%; AUROC, 0.95; 95% CI, 0.91-0.99), even in participants without PSP-RS or CBS at MRI.In this study, the combination of widely available cortical and subcortical measures of atrophy on MRI discriminated between PSP, CBD, and other pathologies and could be used to support the diagnosis of 4RT in clinical practice

    Four distinct trajectories of tau deposition identified in Alzheimer’s disease

    Get PDF
    Alzheimer’s Disease Neuroimaging Initiative.Alzheimer’s disease (AD) is characterized by the spread of tau pathology throughout the cerebral cortex. This spreading pattern was thought to be fairly consistent across individuals, although recent work has demonstrated substantial variability in the population with AD. Using tau-positron emission tomography scans from 1,612 individuals, we identified 4 distinct spatiotemporal trajectories of tau pathology, ranging in prevalence from 18 to 33%. We replicated previously described limbic-predominant and medial temporal lobe-sparing patterns, while also discovering posterior and lateral temporal patterns resembling atypical clinical variants of AD. These ‘subtypes’ were stable during longitudinal follow-up and were replicated in a separate sample using a different radiotracer. The subtypes presented with distinct demographic and cognitive profiles and differing longitudinal outcomes. Additionally, network diffusion models implied that pathology originates and spreads through distinct corticolimbic networks in the different subtypes. Together, our results suggest that variation in tau pathology is common and systematic, perhaps warranting a re-examination of the notion of ‘typical AD’ and a revisiting of tau pathological staging.J.W.V. acknowledges support from the government of Canada through a tri-council Vanier Canada Graduate Doctoral fellowship from the McGill Centre for Integrative Neuroscience and the Healthy Brains, Healthy Lives initiative, and from the National Institutes of Health (NIH) (no. T32MH019112). A.L.Y. is supported by a Medical Research Council Skills Development Fellowship (MR/T027800/1). N.P.O. is a UK Research and Innovation Future Leaders Fellow (no. MR/S03546X/1). N.P.O. and D.C.A. acknowledge support from the UK National Institute for Health Research University College London Hospitals Biomedical Research Centre, and D.C.A. acknowledges support from the Engineering and Physical Sciences Research Council grant no. EP/M020533/1. M.J.G. is supported by the Miguel Servet program (no. CP19/00031) and a research grant (no. PI20/00613) of the Instituto de Salud Carlos III-Fondo Europeo de Desarrollo Regional. R.L.J. acknowledges support from the NIH (no. K99AG065501). This project received funding from the European Union’s Horizon 2020 research and innovation programme under grant no. 666992. The BioFINDER studies are supported by the Swedish Research Council (no. 2016-00906), the Knut and Alice Wallenberg Foundation (no. 2017-0383), the Marianne and Marcus Wallenberg Foundation (no. 2015.0125), the Strategic Research Area MultiPark (Multidisciplinary Research in Parkinson’s disease) at Lund University, the Swedish Alzheimer’s Foundation (no. AF-939932), the Swedish Brain Foundation (no. FO2019-0326), the Swedish Parkinson Foundation (no. 1280/20), the Skåne University Hospital Foundation (no. 2020-O000028), Regionalt Forskningsstöd (no. 2020-0314) and the Swedish Federal Government under the ALF agreement (no. 2018-Projekt0279). The Tau PET study in Gangnam Severance Hospital was supported by a grant from the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education (nos. NRF2018R1D1A1B07049386 and NRF2020R1F1A1076154) and a grant from the Korea Health Technology R&D Project through the Korea Health Industry Development Institute funded by the Ministry of Health and Welfare, Republic of Korea (grant no. HI18C1159). We also thank B. L. Miller, H. J. Rosen, M. Gorno Tempini and W. Jagust for supporting the UCSF tau-PET studies, which were funded through the following sources: National Institute on Aging (NIA) no. R01 AG045611 (G.D.R.), no. P50 AG23501 (B.L.M., H.J.R., G.D.R.), no. P01 AG019724 (B.L.M., H.J.R., G.D.R.). The precursor of 18F-flortaucipir was provided by AVID Radiopharmaceuticals. The precursor of 18F-flutemetamol was sponsored by GE Healthcare. The precursor of 18F-RO948 was provided by Roche. Data collection and sharing for this project were funded by ADNI (NIH grant no. U01 AG024904) and Department of Defense ADNI (award no. W81XWH-12-2-0012). ADNI is funded by the NIA, the National Institute of Biomedical Imaging and Bioengineering and through generous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; Bioclinica; Biogen; Bristol Myers Squibb; CereSpir; Cogstate; Eisai; Elan Pharmaceuticals; Eli Lilly and Company; EUROIMMUN; F. Hoffmann-La Roche and its affiliated company Genentech; Fujirebio; GE Healthcare; IXICO; Janssen Alzheimer Immunotherapy Research Development; Johnson & Johnson Pharmaceutical Research Development; Lumosity; Lundbeck; Merck; Meso Scale Diagnostics; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California

    Multi-feature computational framework for combined signatures of dementia in underrepresented settings

    Get PDF
    PUBLISHED 25 August 2022Objective. The differential diagnosis of behavioral variant frontotemporal dementia (bvFTD) and Alzheimer’s disease (AD) remains challenging in underrepresented, underdiagnosed groups, including Latinos, as advanced biomarkers are rarely available. Recent guidelines for the study of dementia highlight the critical role of biomarkers. Thus, novel cost-effective complementary approaches are required in clinical settings. Approach. We developed a novel framework based on a gradient boosting machine learning classifier, tuned by Bayesian optimization, on a multi-feature multimodal approach (combining demographic, neuropsychological, magnetic resonance imaging (MRI), and electroencephalography/functional MRI connectivity data) to characterize neurodegeneration using site harmonization and sequential feature selection. We assessed 54 bvFTD and 76 AD patients and 152 healthy controls (HCs) from a Latin American consortium (ReDLat). Main results. The multimodal model yielded high area under the curve classification values (bvFTD patients vs HCs: 0.93 (±0.01); AD patients vs HCs: 0.95 (±0.01); bvFTD vs AD patients: 0.92 (±0.01)). The feature selection approach successfully filtered non-informative multimodal markers (from thousands to dozens). Results. Proved robust against multimodal heterogeneity, sociodemographic variability, and missing data. Significance. The model accurately identified dementia subtypes using measures readily available in underrepresented settings, with a similar performance than advanced biomarkers. This approach, if confirmed and replicated, may potentially complement clinical assessments in developing countries.Sebastian Moguilner, Agustina Birba, Sol Fittipaldi, Cecilia Gonzalez-Campo, Enzo Tagliazucchi, Pablo Reyes, Diana Matallana, Mario A Parra, Andrea Slachevsky, Gonzalo Farías, Josefina Cruzat, Adolfo García, Harris A Eyre, Renaud La Joie, Gil Rabinovici, Robert Whelan and Agustín Ibáñe

    Longitudinal clinical, cognitive and biomarker profiles in dominantly inherited versus sporadic early-onset Alzheimer's disease

    Get PDF
    Approximately 5% of Alzheimer's disease cases have an early age at onset (<65 years), with 5-10% of these cases attributed to dominantly inherited mutations and the remainder considered as sporadic. The extent to which dominantly inherited and sporadic early-onset Alzheimer's disease overlap is unknown. In this study, we explored the clinical, cognitive and biomarker profiles of early-onset Alzheimer's disease, focusing on commonalities and distinctions between dominantly inherited and sporadic cases. Our analysis included 117 participants with dominantly inherited Alzheimer's disease enrolled in the Dominantly Inherited Alzheimer Network and 118 individuals with sporadic early-onset Alzheimer's disease enrolled at the University of California San Francisco Alzheimer's Disease Research Center. Baseline differences in clinical and biomarker profiles between both groups were compared using t-tests. Differences in the rates of decline were compared using linear mixed-effects models. Individuals with dominantly inherited Alzheimer's disease exhibited an earlier age-at-symptom onset compared with the sporadic group [43.4 (SD +/- 8.5) years versus 54.8 (SD +/- 5.0) years, respectively, P < 0.001]. Sporadic cases showed a higher frequency of atypical clinical presentations relative to dominantly inherited (56.8% versus 8.5%, respectively) and a higher frequency of APOE-epsilon 4 (50.0% versus 28.2%, P = 0.001). Compared with sporadic early onset, motor manifestations were higher in the dominantly inherited cohort [32.5% versus 16.9% at baseline (P = 0.006) and 46.1% versus 25.4% at last visit (P = 0.001)]. At baseline, the sporadic early-onset group performed worse on category fluency (P < 0.001), Trail Making Test Part B (P < 0.001) and digit span (P < 0.001). Longitudinally, both groups demonstrated similar rates of cognitive and functional decline in the early stages. After 10 years from symptom onset, dominantly inherited participants experienced a greater decline as measured by Clinical Dementia Rating Sum of Boxes [3.63 versus 1.82 points (P = 0.035)]. CSF amyloid beta-42 levels were comparable [244 (SD +/- 39.3) pg/ml dominantly inherited versus 296 (SD +/- 24.8) pg/ml sporadic early onset, P = 0.06]. CSF phosphorylated tau at threonine 181 levels were higher in the dominantly inherited Alzheimer's disease cohort (87.3 versus 59.7 pg/ml, P = 0.005), but no significant differences were found for t-tau levels (P = 0.35). In summary, sporadic and inherited Alzheimer's disease differed in baseline profiles;sporadic early onset is best distinguished from dominantly inherited by later age at onset, high frequency of atypical clinical presentations and worse executive performance at baseline. Despite these differences, shared pathways in longitudinal clinical decline and CSF biomarkers suggest potential common therapeutic targets for both populations, offering valuable insights for future research and clinical trial design

    Comparison of histological delineations of medial temporal lobe cortices by four independent neuroanatomy laboratories

    Get PDF
    The medial temporal lobe (MTL) cortex, located adjacent to the hippocampus, is crucial for memory and prone to the accumulation of certain neuropathologies such as Alzheimer's disease neurofibrillary tau tangles. The MTL cortex is composed of several subregions which differ in their functional and cytoarchitectonic features. As neuroanatomical schools rely on different cytoarchitectonic definitions of these subregions, it is unclear to what extent their delineations of MTL cortex subregions overlap. Here, we provide an overview of cytoarchitectonic definitions of the entorhinal and parahippocampal cortices as well as Brodmann areas (BA) 35 and 36, as provided by four neuroanatomists from different laboratories, aiming to identify the rationale for overlapping and diverging delineations. Nissl-stained series were acquired from the temporal lobes of three human specimens (two right and one left hemisphere). Slices (50 μm thick) were prepared perpendicular to the long axis of the hippocampus spanning the entire longitudinal extent of the MTL cortex. Four neuroanatomists annotated MTL cortex subregions on digitized slices spaced 5 mm apart (pixel size 0.4 μm at 20× magnification). Parcellations, terminology, and border placement were compared among neuroanatomists. Cytoarchitectonic features of each subregion are described in detail. Qualitative analysis of the annotations showed higher agreement in the definitions of the entorhinal cortex and BA35, while the definitions of BA36 and the parahippocampal cortex exhibited less overlap among neuroanatomists. The degree of overlap of cytoarchitectonic definitions was partially reflected in the neuroanatomists' agreement on the respective delineations. Lower agreement in annotations was observed in transitional zones between structures where seminal cytoarchitectonic features are expressed less saliently. The results highlight that definitions and parcellations of the MTL cortex differ among neuroanatomical schools and thereby increase understanding of why these differences may arise. This work sets a crucial foundation to further advance anatomically-informed neuroimaging research on the human MTL cortex

    Using PET with 18F-AV-45 (florbetapir) to quantify brain amyloid load in a clinical environment

    Get PDF
    International audiencePURPOSE: Positron emission tomography (PET) imaging of brain amyloid load has been suggested as a core biomarker for Alzheimer's disease (AD). The aim of this study was to test the feasibility of using PET imaging with (18)F-AV-45 (florbetapir) in a routine clinical environment to differentiate between patients with mild to moderate AD and mild cognitive impairment (MCI) from normal healthy controls (HC). METHODS: In this study, 46 subjects (20 men and 26 women, mean age of 69.0 ± 7.6 years), including 13 with AD, 12 with MCI and 21 HC subjects, were enrolled from three academic memory clinics. PET images were acquired over a 10-min period 50 min after injection of florbetapir (mean ± SD of radioactivity injected, 259 ± 57 MBq). PET images were assessed visually by two individuals blinded to any clinical information and quantitatively via the standard uptake value ratio (SUVr) in the specific regions of interest, which were defined in relation to the cerebellum as the reference region. RESULTS: The mean values of SUVr were higher in AD patients (median 1.20, Q1-Q3 1.16-1.30) than in HC subjects (median 1.05, Q1-Q3 1.04-1.08; p = 0.0001) in the overall cortex and all cortical regions (precuneus, anterior and posterior cingulate, and frontal median, temporal, parietal and occipital cortex). The MCI subjects also showed a higher uptake of florbetapir in the posterior cingulate cortex (median 1.06, Q1-Q3 0.97-1.28) compared with HC subjects (median 0.95, Q1-Q3 0.82-1.02; p = 0.03). Qualitative visual assessment of the PET scans showed a sensitivity of 84.6% (95% CI 0.55-0.98) and a specificity of 38.1% (95% CI 0.18-0.62) for discriminating AD patients from HC subjects; however, the quantitative assessment of the global cortex SUVr showed a sensitivity of 92.3% and specificity of 90.5% with a cut-off value of 1.122 (area under the curve 0.894). CONCLUSION: These preliminary results suggest that PET with florbetapir is a safe and suitable biomarker for AD that can be used routinely in a clinical environment. However, the low specificity of the visual PET scan assessment could be improved by the use of specific training and automatic or semiautomatic quantification tools
    • …
    corecore