389 research outputs found

    On rapid migration and accretion within disks around supermassive black holes

    Full text link
    Galactic nuclei should contain a cluster of stars and compact objects in the vicinity of the central supermassive black hole due to stellar evolution, minor mergers and gravitational dynamical friction. By analogy with protoplanetary migration, nuclear cluster objects (NCOs) can migrate in the accretion disks that power active galactic nuclei by exchanging angular momentum with disk gas. Here we show that an individual NCO undergoing runaway outward migration comparable to Type III protoplanetary migration can generate an accretion rate corresponding to Seyfert AGN or quasar luminosities. Multiple migrating NCOs in an AGN disk can dominate traditional viscous disk accretion and at large disk radii, ensemble NCO migration and accretion could provide sufficient heating to prevent the gravitational instability from consuming disk gas in star formation. The magnitude and energy of the X-ray soft excess observed at ~0.1-1keV in Seyfert AGN could be explained by a small population of ~10^{2}-10^{3} accreting stellar mass black holes or a few ULXs. NCO migration and accretion in AGN disks are therefore extremely important mechanisms to add to realistic models of AGN disks.Comment: 6 pages, 2 figures, MNRAS Letters (accepted

    Nonextensive Entropies derived from Form Invariance of Pseudoadditivity

    Full text link
    The form invariance of pseudoadditivity is shown to determine the structure of nonextensive entropies. Nonextensive entropy is defined as the appropriate expectation value of nonextensive information content, similar to the definition of Shannon entropy. Information content in a nonextensive system is obtained uniquely from generalized axioms by replacing the usual additivity with pseudoadditivity. The satisfaction of the form invariance of the pseudoadditivity of nonextensive entropy and its information content is found to require the normalization of nonextensive entropies. The proposed principle requires the same normalization as that derived in [A.K. Rajagopal and S. Abe, Phys. Rev. Lett. {\bf 83}, 1711 (1999)], but is simpler and establishes a basis for the systematic definition of various entropies in nonextensive systems.Comment: 16 pages, accepted for publication in Physical Review

    Thin Domain Walls in Lyra Geometry

    Get PDF
    This paper studies thin domain walls within the frame work of Lyra Geometry. We have considered two models. First one is the thin domain wall with negligible pressures perpendicular and transverse direction to the wall and secondly, we take a particular type of thin domain wall where the pressure in the perpendicular direction is negligible but transverse pressures are existed. It is shown that the thin domain walls have no particle horizon and the gravitational force due to them is attractive.Comment: 8 pages, typos are corrected, published Astrophysics and Space Sciences 305, 337 (2006

    Generalized Zipf's Law in proportional voting processes

    Full text link
    Voting data from city-councillors, state and federal deputies elections are analyzed and considered as a response function of a social system with underlying dynamics leading to complex behavior. The voting results from the last two general Brazilian elections held in 1998 and 2000 are then used as representative data sets. We show that the voting distributions follow a generalized Zipf's Law which has been recently proposed within a nonextensive statistics framework. Moreover, the voting distribution for city-councillors is clearly distinct from those of state and federal deputies in the sense that the latter depicts a higher degree of nonextensivity. We relate this finding with the different degrees of complexity corresponding to local and non-local voting processes.Comment: 5 pages, 3 figure

    Magnon delocalization in ferromagnetic chains with long-range correlated disorder

    Full text link
    We study one-magnon excitations in a random ferromagnetic Heisenberg chain with long-range correlations in the coupling constant distribution. By employing an exact diagonalization procedure, we compute the localization length of all one-magnon states within the band of allowed energies EE. The random distribution of coupling constants was assumed to have a power spectrum decaying as S(k)∝1/kαS(k)\propto 1/k^{\alpha}. We found that for α<1\alpha < 1, one-magnon excitations remain exponentially localized with the localization length Ο\xi diverging as 1/E. For α=1\alpha = 1 a faster divergence of Ο\xi is obtained. For any α>1\alpha > 1, a phase of delocalized magnons emerges at the bottom of the band. We characterize the scaling behavior of the localization length on all regimes and relate it with the scaling properties of the long-range correlated exchange coupling distribution.Comment: 7 Pages, 5 figures, to appear in Phys. Rev.

    A Dynamic Approach to the Thermodynamics of Superdiffusion

    Full text link
    We address the problem of relating thermodynamics to mechanics in the case of microscopic dynamics without a finite time scale. The solution is obtained by expressing the Tsallis entropic index q as a function of the Levy index alpha, and using dynamical rather than probabilistic arguments.Comment: 4 pages, new revised version resubmitted to Phys. Rev. Let

    ICTD Work, Plus mFeel : improving communication in resource-poor settings

    Get PDF
    This issue's Works-In-Progress department has four entries related to the issue's theme, Information and Communication Technologies for Development (ICTD). They are “Sustainable ICT in Agricultural Value Chains”, “Measuring Social Inclusion in Primary Schools”, “An Architecture for Green Mobile Computation”, and “Improving Communication in Resource-Poor Settings”. A fifth entry, “mFeel: An Affective Mobile System”, covers the mFeel mobile system, which combines context awareness with affective and cognitive techniques

    Nonextensivity and multifractality in low-dimensional dissipative systems

    Full text link
    Power-law sensitivity to initial conditions at the edge of chaos provides a natural relation between the scaling properties of the dynamics attractor and its degree of nonextensivity as prescribed in the generalized statistics recently introduced by one of us (C.T.) and characterized by the entropic index qq. We show that general scaling arguments imply that 1/(1−q)=1/αmin−1/αmax1/(1-q) = 1/\alpha_{min}-1/\alpha_{max}, where αmin\alpha_{min} and αmax\alpha_{max} are the extremes of the multifractal singularity spectrum f(α)f(\alpha) of the attractor. This relation is numerically checked to hold in standard one-dimensional dissipative maps. The above result sheds light on a long-standing puzzle concerning the relation between the entropic index qq and the underlying microscopic dynamics.Comment: 12 pages, TeX, 4 ps figure

    The discontinuous nature of chromospheric activity evolution

    Full text link
    Chromospheric activity has been thought to decay smoothly with time and, hence, to be a viable age indicator. Measurements in solar type stars in open clusters seem to point to a different conclusion: chromospheric activity undergoes a fast transition from Hyades level to that of the Sun after about 1 Gyr of main--sequence lifetime and any decaying trend before or after this transition must be much less significant than the short term variations.Comment: 6 pages, 1 figure, to be published in Astrophysics and Space Scienc

    Nonextensivity of the cyclic Lattice Lotka Volterra model

    Full text link
    We numerically show that the Lattice Lotka-Volterra model, when realized on a square lattice support, gives rise to a {\it finite} production, per unit time, of the nonextensive entropy Sq=1−∑ipiqq−1S_q= \frac{1- \sum_ip_i^q}{q-1} (S1=−∑ipiln⁡pi)(S_1=-\sum_i p_i \ln p_i). This finiteness only occurs for q=0.5q=0.5 for the d=2d=2 growth mode (growing droplet), and for q=0q=0 for the d=1d=1 one (growing stripe). This strong evidence of nonextensivity is consistent with the spontaneous emergence of local domains of identical particles with fractal boundaries and competing interactions. Such direct evidence is for the first time exhibited for a many-body system which, at the mean field level, is conservative.Comment: Latex, 6 pages, 5 figure
    • 

    corecore