1,138 research outputs found
Foot Bone in Vivo: Its Center of Mass and Centroid of Shape
This paper studies foot bone geometrical shape and its mass distribution and
establishes an assessment method of bone strength. Using spiral CT scanning,
with an accuracy of sub-millimeter, we analyze the data of 384 pieces of foot
bones in vivo and investigate the relationship between the bone's external
shape and internal structure. This analysis is explored on the bases of the
bone's center of mass and its centroid of shape. We observe the phenomenon of
superposition of center of mass and centroid of shape fairly precisely,
indicating a possible appearance of biomechanical organism. We investigate two
aspects of the geometrical shape, (i) distance between compact bone's centroid
of shape and that of the bone and (ii) the mean radius of the same density bone
issue relative to the bone's centroid of shape. These quantities are used to
interpret the influence of different physical exercises imposed on bone
strength, thereby contributing to an alternate assessment technique to bone
strength.Comment: 9 pages, 4 figure
The aetiologies of central nervous system infections in hospitalised Cambodian children
Background Central nervous system (CNS) infections are an important cause of childhood morbidity and mortality. The aetiologies of these potentially vaccine-preventable infections have not been well established in Cambodia. Methods We did a one year prospective study of children hospitalised with suspected CNS infection at Angkor Hospital for Children, Siem Reap. Cerebrospinal fluid specimens (CSF) samples underwent culture, multiplex PCR and serological analysis to identify a range of bacterial and viral pathogens. Viral metagenomics was performed on a subset of pathogen negative specimens. Results Between 1st October 2014 and 30th September 2015, 284 analysable patients were enrolled. The median patient age was 2.6 years; 62.0% were aged <5 years. CSF white blood cell count was ≥10 cells/μL in 116/272 (42.6%) cases. CNS infection was microbiologically confirmed in 55 children (19.3%). Enteroviruses (21/55), Japanese encephalitis virus (17/55), and Streptococcus pneumoniae (7/55) accounted for 45 (81.8%) of all pathogens identified. Of the pathogens detected, 74.5% (41/55) were viruses and 23.6% (13/55) were bacteria. The majority of patients were treated with ceftriaxone empirically. The case fatality rate was 2.5%. Conclusions Enteroviruses, JEV and S. pneumoniae are the most frequently detected causes of CNS infection in hospitalised Cambodian children
Neuroanatomical Domain of the Foundational Model of Anatomy Ontology
Background: The diverse set of human brain structure and function analysis methods represents a difficult challenge for reconciling multiple views of neuroanatomical organization. While different views of organization are expected and valid, no widely adopted approach exists to harmonize different brain labeling protocols and terminologies. Our approach uses the natural organizing framework provided by anatomical structure to correlate terminologies commonly used in neuroimaging. Description: The Foundational Model of Anatomy (FMA) Ontology provides a semantic framework for representing the anatomical entities and relationships that constitute the phenotypic organization of the human body. In this paper we describe recent enhancements to the neuroanatomical content of the FMA that models cytoarchitectural and morphological regions of the cerebral cortex, as well as white matter structure and connectivity. This modeling effort is driven by the need to correlate and reconcile the terms used in neuroanatomical labeling protocols. By providing an ontological framework that harmonizes multiple views of neuroanatomical organization, the FMA provides developers with reusable and computable knowledge for a range of biomedical applications. Conclusions: A requirement for facilitating the integration of basic and clinical neuroscience data from diverse sources is a well-structured ontology that can incorporate, organize, and associate neuroanatomical data. We applied the ontological framework of the FMA to align the vocabularies used by several human brain atlases, and to encode emerging knowledge about structural connectivity in the brain. We highlighted several use cases of these extensions, including ontology reuse, neuroimaging data annotation, and organizing 3D brain models
Giant Superfluorescent Bursts from a Semiconductor Magnetoplasma
Currently, considerable resurgent interest exists in the concept of
superradiance (SR), i.e., accelerated relaxation of excited dipoles due to
cooperative spontaneous emission, first proposed by Dicke in 1954. Recent
authors have discussed SR in diverse contexts, including cavity quantum
electrodynamics, quantum phase transitions, and plasmonics. At the heart of
these various experiments lies the coherent coupling of constituent particles
to each other via their radiation field that cooperatively governs the dynamics
of the whole system. In the most exciting form of SR, called superfluorescence
(SF), macroscopic coherence spontaneously builds up out of an initially
incoherent ensemble of excited dipoles and then decays abruptly. Here, we
demonstrate the emergence of this photon-mediated, cooperative, many-body state
in a very unlikely system: an ultradense electron-hole plasma in a
semiconductor. We observe intense, delayed pulses, or bursts, of coherent
radiation from highly photo-excited semiconductor quantum wells with a
concomitant sudden decrease in population from total inversion to zero. Unlike
previously reported SF in atomic and molecular systems that occur on nanosecond
time scales, these intense SF bursts have picosecond pulse-widths and are
delayed in time by tens of picoseconds with respect to the excitation pulse.
They appear only at sufficiently high excitation powers and magnetic fields and
sufficiently low temperatures - where various interactions causing decoherence
are suppressed. We present theoretical simulations based on the relaxation and
recombination dynamics of ultrahigh-density electron-hole pairs in a quantizing
magnetic field, which successfully capture the salient features of the
experimental observations.Comment: 21 pages, 4 figure
Intrathecal Immunoglobulin for treatment of adult patients with tetanus: A randomized controlled 2x2 factorial trial
Despite long-standing availability of an effective vaccine, tetanus remains a significant problem in many countries. Outcome depends on access to mechanical ventilation and intensive care facilities and in settings where these are limited, mortality remains high. Administration of tetanus antitoxin by the intramuscular route is recommended treatment for tetanus, but as the tetanus toxin acts within the central nervous system, it has been suggested that intrathecal administration of antitoxin may be beneficial. Previous studies have indicated benefit, but with the exception of one small trial no blinded studies have been performed. The objective of this study is to establish whether the addition of intrathecal tetanus antitoxin reduces the need for mechanical ventilation in patients with tetanus. Secondary objectives: to determine whether the addition of intrathecal tetanus antitoxin reduces autonomic nervous system dysfunction and length of hospital/ intensive care unit stay; whether the addition of intrathecal tetanus antitoxin in the treatment of tetanus is safe and cost-effective; to provide data to inform recommendation of human rather than equine antitoxin. This study will enroll adult patients (≥16 years old) with tetanus admitted to the Hospital for Tropical Diseases, Ho Chi Minh City. The study is a 2x2 factorial blinded randomized controlled trial. Eligible patients will be randomized in a 1:1:1:1 manner to the four treatment arms (intrathecal treatment and human intramuscular treatment, intrathecal treatment and equine intramuscular treatment, sham procedure and human intramuscular treatment, sham procedure and equine intramuscular treatment). Primary outcome measure will be requirement for mechanical ventilation. Secondary outcome measures: duration of hospital/ intensive care unit stay, duration of mechanical ventilation, in-hospital and 240-day mortality and disability, new antibiotic prescription, incidence of ventilator associated pneumonia and autonomic nervous system dysfunction, total dose of benzodiazepines and pipecuronium, and incidence of adverse events. Trial registration: ClinicalTrials.gov NCT02999815 Registration date: 21 December 2016
Midgut microbiota of the malaria mosquito vector Anopheles gambiae and Interactions with plasmodium falciparum Infection
The susceptibility of Anopheles mosquitoes to Plasmodium infections relies on complex interactions between the insect vector and the malaria parasite. A number of studies have shown that the mosquito innate immune responses play an important role in controlling the malaria infection and that the strength of parasite clearance is under genetic control, but little is known about the influence of environmental factors on the transmission success. We present here evidence that the composition of the vector gut microbiota is one of the major components that determine the outcome of mosquito infections. A. gambiae mosquitoes collected in natural breeding sites from Cameroon were experimentally challenged with a wild P. falciparum isolate, and their gut bacterial content was submitted for pyrosequencing analysis. The meta-taxogenomic approach revealed a broader richness of the midgut bacterial flora than previously described. Unexpectedly, the majority of bacterial species were found in only a small proportion of mosquitoes, and only 20 genera were shared by 80% of individuals. We show that observed differences in gut bacterial flora of adult mosquitoes is a result of breeding in distinct sites, suggesting that the native aquatic source where larvae were grown determines the composition of the midgut microbiota. Importantly, the abundance of Enterobacteriaceae in the mosquito midgut correlates significantly with the Plasmodium infection status. This striking relationship highlights the role of natural gut environment in parasite transmission. Deciphering microbe-pathogen interactions offers new perspectives to control disease transmission.Institut de Recherche pour le Developpement (IRD); French Agence Nationale pour la Recherche [ANR-11-BSV7-009-01]; European Community [242095, 223601]info:eu-repo/semantics/publishedVersio
Winter Bird Assemblages in Rural and Urban Environments: A National Survey
Urban development has a marked effect on the ecological and behavioural traits of many living
organisms, including birds. In this paper, we analysed differences in the numbers of wintering
birds between rural and urban areas in Poland. We also analysed species richness
and abundance in relation to longitude, latitude, human population size, and landscape
structure. All these parameters were analysed using modern statistical techniques incorporating
species detectability. We counted birds in 156 squares (0.25 km2 each) in December
2012 and again in January 2013 in locations in and around 26 urban areas across Poland
(in each urban area we surveyed 3 squares and 3 squares in nearby rural areas). The influence
of twelve potential environmental variables on species abundance and richness was
assessed with Generalized Linear Mixed Models, Principal Components and Detrended
Correspondence Analyses. Totals of 72 bird species and 89,710 individual birds were recorded
in this study. On average (±SE) 13.3 ± 0.3 species and 288 ± 14 individuals were recorded
in each square in each survey. A formal comparison of rural and urban areas
revealed that 27 species had a significant preference; 17 to rural areas and 10 to urban areas. Moreover, overall abundance in urban areas was more than double that of rural
areas. There was almost a complete separation of rural and urban bird communities. Significantly
more birds and more bird species were recorded in January compared to December.
We conclude that differences between rural and urban areas in terms of winter conditions
and the availability of resources are reflected in different bird communities in the two
environments
Publication Bias in Antipsychotic Trials: An Analysis of Efficacy Comparing the Published Literature to the US Food and Drug Administration Database
A comparison of data held by the U.S. Food and Drug Administration (FDA) against data from journal reports of clinical trials enables estimation of the extent of publication bias for antipsychotics
Recommended from our members
A ‘heart rate’-based model (PHSHR) for predicting personal heat stress in dynamic working environments
The parameter of human body metabolic rates has been popularly used for the prediction of human heat stress in hot environments. However, most modules use the fixed and estimated metabolic heat production. The aim of this study is to develop the prediction of personal heat stress in dynamic working environments. Based on the framework of the predicted heat stress (PHS) model in ISO 7933, a heart-rate based PHSHR model has been developed using the time-based heart rate index, which is suitable for prediction in situations where metabolic rates are dynamic and there are inter-individual variations. The infinitesimal time unit Δti, has been introduced into the new PHSHR model and all the terms used in the PHS model related to metabolic rates are thus redefined as the function of real-time heart rates. The PHSHR has been validated under 8 experimental combined temperature-humidity conditions in a well-controlled climate chamber. The feature of the PHSHR model is being able to calculate dynamic changes in body metabolism with exposure time. It will be useful to the identification of potential risks of individual workers so to establish an occupational working environment health and safety protection mechanism by means of simultaneous monitoring of workers’ heart rates at the personal levels, using advanced sensor technology
High expression of focal adhesion kinase (p125(FAK)) in node-negative breast cancer is related to overexpression of HER-2/neu and activated Akt kinase but does not predict outcome
INTRODUCTION: Focal adhesion kinase (FAK) regulates multiple cellular processes including growth, differentiation, adhesion, motility and apoptosis. In breast carcinoma, FAK overexpression has been linked to cancer progression but the prognostic relevance remains unknown. In particular, with regard to lymph node-negative breast cancer it is important to identify high-risk patients who would benefit from further adjuvant therapy. METHODS: We analyzed 162 node-negative breast cancer cases to determine the prognostic relevance of FAK expression, and we investigated the relationship of FAK with major associated signaling pathways (HER2, Src, Akt and extracellular regulated kinases) by immunohistochemistry and western blot analysis. RESULTS: Elevated FAK expression did not predict patient outcome, in contrast to tumor grading (P = 0.005), Akt activation (P = 0.0383) and estrogen receptor status (P = 0.0033). Significant positive correlations were observed between elevated FAK expression and HER2 overexpression (P = 0.001), as well as phospho-Src Tyr-215 (P = 0.021) and phospho-Akt (P < 0.001), but not with phospho-ERK1/2 (P = 0.108). Western blot analysis showed a significant correlation of FAK Tyr-861 activation and HER2 overexpression (P = 0.01). CONCLUSIONS: Immunohistochemical detection of FAK expression is of no prognostic significance in node-negative breast cancer but provides evidence that HER2 is involved in tumor malignancy and metastatic ability of breast cancer through a novel signaling pathway participating FAK and Src
- …