1,443 research outputs found
A theory for molecular transport phenomena through thin membranes
Theory for molecular transport phenomena through thin membrane
Oxygen in the Galactic thin and thick disks
First results from a study into the abundance trends of oxygen in the
Galactic thin and thick disks are presented. Oxygen abundances for 21 thick
disk and 42 thin disk F and G dwarf stars based on very high resolution spectra
(R\sim 215000) and high signal-to-noise (S/N>400) of the faint forbidden oxygen
line at 6300 A have been determined. We find that [O/Fe] for the thick disk
stars show a turn-down, i.e. the ``knee'', at [Fe/H] between -0.4 and -0.3 dex
indicating the onset of SNe type Ia. The thin disk stars on the other hand show
a shallow decrease going from [Fe/H] \sim -0.7 to the highest metallicities
with no apparent ``knee'' present indicating a slower star formation history.Comment: To be published in "CNO in the Universe", ASP Conference Series, C.
Charbonnel, D. Schaerer & G. Meynet (eds.
Some Effects of Roll Rate on the Longitudinal Stability Characteristics of the Hughes Falcon Missile, ''C'' Configuration, for a Mach Number Range of 1.1 to 1.8 as Determined from Flight Test
Dynamics of Charge Leakage From Self-assembled CdTe Quantum Dots
We study the leakage dynamics of charge stored in an ensemble of CdTe quantum
dots embedded in a field-effect structure. Optically excited electrons are
stored and read out by a proper time sequence of bias pulses. We monitor the
dynamics of electron loss and find that the rate of the leakage is strongly
dependent on time, which we attribute to an optically generated electric field
related to the stored charge. A rate equation model quantitatively reproduces
the results.Comment: 4 pages, submitted to Applied Physics Letter
Decoherence due to contacts in ballistic nanostructures
The active region of a ballistic nanostructure is an open quantum-mechanical
system, whose nonunitary evolution (decoherence) towards a nonequilibrium
steady state is determined by carrier injection from the contacts. The purpose
of this paper is to provide a simple theoretical description of the
contact-induced decoherence in ballistic nanostructures, which is established
within the framework of the open systems theory. The active region's evolution
in the presence of contacts is generally non-Markovian. However, if the
contacts' energy relaxation due to electron-electron scattering is sufficiently
fast, then the contacts can be considered memoryless on timescales coarsened
over their energy relaxation time, and the evolution of the current-limiting
active region can be considered Markovian. Therefore, we first derive a general
Markovian map in the presence of a memoryless environment, by coarse-graining
the exact short-time non-Markovian dynamics of an abstract open system over the
environment memory-loss time, and we give the requirements for the validity of
this map. We then introduce a model contact-active region interaction that
describes carrier injection from the contacts for a generic two-terminal
ballistic nanostructure. Starting from this model interaction and using the
Markovian dynamics derived by coarse-graining over the effective memory-loss
time of the contacts, we derive the formulas for the nonequilibrium
steady-state distribution functions of the forward and backward propagating
states in the nanostructure's active region. On the example of a double-barrier
tunneling structure, the present approach yields an I-V curve with all the
prominent resonant features. The relationship to the Landauer-B\"{u}ttiker
formalism is also discussed, as well as the inclusion of scattering.Comment: Published versio
Quantum Transport in a Nanosize Silicon-on-Insulator Metal-Oxide-Semiconductor
An approach is developed for the determination of the current flowing through
a nanosize silicon-on-insulator (SOI) metal-oxide-semiconductor field-effect
transistors (MOSFET). The quantum mechanical features of the electron transport
are extracted from the numerical solution of the quantum Liouville equation in
the Wigner function representation. Accounting for electron scattering due to
ionized impurities, acoustic phonons and surface roughness at the Si/SiO2
interface, device characteristics are obtained as a function of a channel
length. From the Wigner function distributions, the coexistence of the
diffusive and the ballistic transport naturally emerges. It is shown that the
scattering mechanisms tend to reduce the ballistic component of the transport.
The ballistic component increases with decreasing the channel length.Comment: 21 pages, 8 figures, E-mail addresses: [email protected]
Interaction-induced chaos in a two-electron quantum-dot system
A quasi-one-dimensional quantum dot containing two interacting electrons is
analyzed in search of signatures of chaos. The two-electron energy spectrum is
obtained by diagonalization of the Hamiltonian including the exact Coulomb
interaction. We find that the level-spacing fluctuations follow closely a
Wigner-Dyson distribution, which indicates the emergence of quantum signatures
of chaos due to the Coulomb interaction in an otherwise non-chaotic system. In
general, the Poincar\'e maps of a classical analog of this quantum mechanical
problem can exhibit a mixed classical dynamics. However, for the range of
energies involved in the present system, the dynamics is strongly chaotic,
aside from small regular regions. The system we study models a realistic
semiconductor nanostructure, with electronic parameters typical of gallium
arsenide.Comment: 4 pages, 3ps figure
Monitoring Ion Channel Function In Real Time Through Quantum Decoherence
In drug discovery research there is a clear and urgent need for non-invasive
detection of cell membrane ion channel operation with wide-field capability.
Existing techniques are generally invasive, require specialized nano
structures, or are only applicable to certain ion channel species. We show that
quantum nanotechnology has enormous potential to provide a novel solution to
this problem. The nitrogen-vacancy (NV) centre in nano-diamond is currently of
great interest as a novel single atom quantum probe for nanoscale processes.
However, until now, beyond the use of diamond nanocrystals as fluorescence
markers, nothing was known about the quantum behaviour of a NV probe in the
complex room temperature extra-cellular environment. For the first time we
explore in detail the quantum dynamics of a NV probe in proximity to the ion
channel, lipid bilayer and surrounding aqueous environment. Our theoretical
results indicate that real-time detection of ion channel operation at
millisecond resolution is possible by directly monitoring the quantum
decoherence of the NV probe. With the potential to scan and scale-up to an
array-based system this conclusion may have wide ranging implications for
nanoscale biology and drug discovery.Comment: 7 pages, 6 figure
238U-230Th-226Ra Disequilibria Constraints on the Magmatic Evolution of the Cumbre Vieja Volcanics on La Palma, Canary Islands
A suite of 48 samples, including both historical and prehistoric lavas and some plutonic rocks, have been analysed from the Cumbre Vieja rift, La Palma, Canary Islands. Additionally, mineral–melt partition coefficients have been measured for clinopyroxene, plagioclase, amphibole, titanite and apatite in selected rocks. The lavas range from basanite to phonolite (SiO2 = 41·2–57·5 wt % and MgO = 10–0·8 wt %) in composition and form coherent, curvilinear major and trace element arrays in variation diagrams, irrespective of eruption age. The mafic lavas have typical ocean island incompatible trace element patterns and Sr, Nd and Pb isotope compositions show little variation but have a HIMU-type character. Generation of the parental magmas is inferred to have involved ∼4% dynamic melting of a garnet lherzolite source that may have previously been metasomatized by melts derived from a recycled mafic component containing residual phlogopite. The major process of differentiation to phonotephrite involved fractional crystallization of basanitic magmas that evolved along the same liquid line of descent under similar pressure–temperature conditions. Numerical simulations using the MELTS algorithm suggest that this occurred across a temperature interval from c. 1320 to 950°C at 400 MPa and an oxygen fugacity equivalent to quartz–fayalite–magnetite (QFM), with an initial H2O content of 0·3 wt %. The later stages of differentiation (<5 wt % MgO) were dominated by mixing with partial melts of young syenites formed from earlier magma batches. All of the lavas are characterized by 230Th and 226Ra excesses and (230Th/238U) decreases with decreasing Nb/U and increasing SiO2, with no accompanying change in (226Ra/230Th). To explain the observations, we propose a model in which there was a significant role for amphibole, and more importantly accessory titanite, in decre'asing Nb/U, Ce/Pb and Th/U ratios and increasing or buffering (226Ra/230Th) ratios during the later stages of differentiation and magma mixing. These processes all occurred over a few millennia in small magma batches that were repeatedly emplaced within the mid-crust of the Cumbre Vieja rift system prior to rapid transport to the surface
Gate-controlled Guiding of Electrons in Graphene
Ballistic semiconductor structures have allowed the realization of
optics-like phenomena in electronics, including magnetic focusing and lensing.
An extension that appears unique to graphene is to use both n and p carrier
types to create electronic analogs of optical devices having both positive and
negative indices of refraction. Here, we use gate-controlled density with both
p and n carrier types to demonstrate the analog of the fiber-optic guiding in
graphene. Two basic effects are investigated: (1) bipolar p-n junction guiding,
based on the principle of angle-selective transmission though the graphene p-n
interface, and (2) unipolar fiber-optic guiding, using total internal
reflection controlled by carrier density. Modulation of guiding efficiency
through gating is demonstrated and compared to numerical simulations, which
indicates that interface roughness limits guiding performance, with
few-nanometer effective roughness extracted. The development of p-n and
fiber-optic guiding in graphene may lead to electrically reconfigurable wiring
in high-mobility devices.Comment: supplementary materal at
http://marcuslab.harvard.edu/papers/OG_SI.pd
- …
