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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

RESEARCH MEMORANDUM 

for the 

U. S. Air Force 

SOME EFF:&:!TS OF ROLL RATE ON THE LONGITUDINAL 

STABILITY CHARACTERISTICS OF THE HUGHES FALCON MISSILE, 

tIC " CONFIGURATION, FOR A MACH NUMBER RANGE OF 1.1 TO 1. 8 

AS DETERMJNED FROM FLIGHT TEST 

By Reginald R. Lundstrom and Hal T. Baber, Jr. 

SUMMARY 

A full-scale model of the Hughes Falcon miSSile, "c" configuration, 
was flight tested in order to determine stability and control character­
istics while rolling at about 5 radians per second. Comparison is made 
with results from a similar model which rolled at a much lower rate. 

Results showed that, if the ratio of roll rate to natural circular 
frequency in pitch is not greater than about 0.3, the motion following 
a step disturbance in pitch essential~ remains in a plane in space. 

The slope of normal- force coefficient against angle of attack C~ 

was the same as for the slow~ rolling model at 00 control deflection but 
C~ was much higher for the faster rolling model at about 50 control 

deflection . The slope of pitching-moment coefficient against angle of 
attack ~ as determined from the model period of oscillation w~s the 

same for both models at 00 control deflection but was lower for the 
faster rolling model at about 50 control deflection . Damping data for 
the faster rolling model showed considerab~ more scatter than for the 
slow~ rolling model. 

INTRODUCTION 

The Pilotless Aircraft Research Division of the Langley Laboratory, 
at the request of the U. S. Air Force) has been conducting a series of 
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free - flight tests of the full- scale Hughes MX-904 Falcon missile in an 
effort to obtain stability and control effectiveness of the missile over 
its operating speed range) which is principal~ supersonic . 

Longitudinal stability) control derivatives) and drag at subsonic 
and supersonic speeds as determined from the flight test of a model des ­
ignated as a "c" configuration by the Hughes Aircraft Company are pre­
sented in reference 1 . 

This paper presents longitudinal stability and control effectiveness 
for a model which is a replica) as regards configurational geometry and 
mass distribution) of the model for which data have been previous~ pre­
sented in reference 1 . Since it was considered desirable to check the 
techniques of obtaining longitudinal stability derivatives of rolling 
missiles and to determine the general behavior of the missile when step 
inputs of the pitch control are applied) deflected ailerons were employed 
to roll the model approximate~ 5 radians/second at supersonic speeds . 
Comparisons are made throughout this report with the data obtained from 
the flight of the model of reference 1 which experienced very low rates 
of roll. 

SYMBOLS 

normal acceleration) ft/sec2 

transverse acceleration) ft/sec2 

b exponential damping constant in e-bt ) per second 

wing mean aerodynamic chord) ft 

d body diameter ) ft 

g acceleration due to gravity, ft/sec2 

q dynamic pressure) lb/ft2 

A body cross- sectional area) sq ft 

normal- force coefficient, 

Cy lateral- force coefficient, 
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resultant- force coefficient corrected for trim, 

It 211/2 
~ CN - CNtrim) 2 + (Cy - CYtrim) J where and 

Cy are determined using the method of reference 1 trim 

moment of inertia about X- axis, slug- ft2 

moment of inertia about Y- axis, slug- ft2 

moment of inertia about Z- axis, slug- ft2 

Mach number, v/VC 

period of oscillation, sec 

total area of rear lifting surfaces in one plane including 
body intercept, sq ft 

trailing- edge- flap area in one plane, sq ft 

velocity of model, ft/sec 

speed of sound in air, ft/sec 

mode 1 weight, lb 

angle of attack, deg 

value of CN when model is at pitch trim point 

value of Cy when model is at yaw trim point 

control deflection, deg 

change in roll angle from the model roll attitude at time 
of previous pitch control step input, deg 

rate of roll, radians/sec 

damped natural frequency in pitch, ~/p, radians/sec 

3 
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Derivatives : 
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dC 
CN~ = ~, per deg 

~ 

Clem = ~ , per deg 
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MODEL AND APPARATUS 

Model Description 

A sketch of the model arrangement is presented in figure 1 and a 
photograph of the model in figure 2. The fuselage, which had an overall 
fineness ratio of 12 . 16, consisted of a 6 .40- inch-diameter cylindrical 
section, and a boattail rear section . The nose section of the model 
was a 2 .25- inch- radius spherical segment and a parabolic section which 
provided a smooth transition from the spherical nose to the cylindrical 
section. The stationary forward lifting surfaces and the rear lifting 
surfaces which will be designated in this report as wings were wounted 
on the fuselage in an in line cruciform arrangement . 

The steel wings of clipped delta plan form were flat plates with a 
thickness ratio of approximate~ 1 . 3 percent at the wing-body juncture . 
Leading and trailing edges were beveled with the leading edge being 
swept back 760 23' . Wing panels in the horizontal plane were equipped 
with movable horn-balanced trailing- edge flaps as shown in figure 3 . 
Panels in the vertical plane were identical to those in the horizontal 
plane with the exception that the trailing- edge controls were preset 
as ailerons to a differential deflection of 00 35' to cause the model 
to roll at approximate~ 5 radians/second at supersonic speeds . 

The flap - type controls in the lift plane, which were connected to 
move as a single unit, were programmed in a continuous square- wave pat­
tern by means of a hydraulic system and motor- driven valve . The two 
control positions werz 00 and 4.9°, measured with respect to the wing 
plane . 

Physical characteristics of the model are presented in the following 
table: 
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Center of gravity, rear of station 0 
IX, slug- ft2 

I y, slug- ft2 

I Z, slug- ft2 

d, ft .. 
A, sq ft 
SW, sq ft 
Sf, sq ft . . 
c, ft .. 
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Instrumentation 
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141.50 
46 .00 
0·312 

22 . 28 

22 . 28 
0·533 
0 .223 
3 . 250 
0 . 267 
2 ·540 

The model was equipped with an NACA eight- channel telemeter which 
t r ansmitted a continuous record of normal , transverse and longitudi nal 
acceleration, angle of attack, rate of roll, control deflection, total 
pressure , and static pressure . Angle of attack was measured by a free ­
floating vane mounted on a sting which protruded from the nose of the 
model . Rolling velocity was measured by a rate gyro . Total pressure 
was obtained by a total- pressure tube extended from the fuselage ahead 
of the wings and in a plane 450 to the two wing planes . A static-pressure 
orifice was located on the cylindrical section of the fuselage ahead of 
the wings . 

Velocity was measured by a CW Doppler velocimeter and agreed closely 
with that obtained through the use of the total pressure . The model's 
position in space was determined by an NACA modified SCR 584 tracking 
radar set . Atmospheric temperature and pressure were measured by a 
radiosonde which was released immediately after the flight . 

TEST TECHNI QUE 

The model , which was launched from a zero- length mobile launcher 
at a 450 elevation angle , was boosted to supersonic velocity by two 
6- inch- diameter solid-propellant rocket motors which together delivered 
approximately 12 ,000 pounds of thrust for 3 seconds . After model and 
booster separated, the model was disturbed in pitch b~r a prograrmned square­
wave deflection of the trailing- edge flaps . Transient responses to the 
step input of the control surface were continuously recorded in the form 
of time histories as the model decelerated through the Mach number range . 

J 
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Corrections 
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Velocity data as obtained by the CW Doppler velocimeter were cor­
rected for flight -path curvature and wind effect at altitude . The 
magnitudes and directi ons of these winds were determined by tracking 
the radiosonde balloon . 

In order to obtain the angle of attack at the center of gravity, 
the angle of attack measured at the nose was corrected for model pitching 
velocity by the method of reference 2 . Angle - of- attack corrections due 
to combined yaw angle and r oll rate were i nvestigated and found to be 
negligi ble . 

Accuracy 

On the basi s of the accuracies of the instrumentation and dynamic 
pressure, the maximum possible errors in M, a , 0 , and CN are Jisted 
as incremental values . It should be reiterated here that CN is based 
on body cross - sectional area . 

Limit of accuracy of -
M 

M a 0 CN 

l.10 t o . Ol t o · 50 t o . 10 t o . 30 
l.80 i. 02 t· 50 t. 10 1:. 09 

These errors, dependent upon telemeter and radar preC1Slon , are 
essentially systematic in nature . From a consideration of previous 
experience, probable errors are 50 percent less than those just quoted . 
Parameters dependent upon differences in measured quantities or slopes 
such as CN are more accurately determined than the previously mentioned 

a 
errors would indicate . 

RESULTS AND DISCUSSI ON 

The Reynolds number per foot for this test varied from 12 . 16 X 106 

at M = 1 .75, to 6 .29 X 106 at M = 1 . 10 . The atmospheric data as well 

------_ .. 
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as the mass and moment of inertia are almost identical for the present 
model and model 2 of reference 1 . No data are presented below a Mach 
number of 1.1 because the instrument l imits were exceeded, probab~ due 
to the fact that the model was near roll resonance (~/ill = 1 ) in this 
range . 

The control motion from 5 = 00 to 5 = 4.90 was very rapid, bei ng 
l ess than 0 . 02 second . The roll displ acement of the model over this 
time was usual~ less than 70 • 

Even though the roll rate averages about 5 radians per second the 
wing tip helix angle is very small . For a roll rate of 5 radians per 
second the wing tip helix angle is about 0 . 20 at M = 1 . 1 and 0 .10 at 
M = 1.75 . 

Time Histories 

The time histories of 5, CN, Cy, and ~ as obtained from the 
flight test are shown in figure 4. As m~ be seen in figure 4, the 
eN trace is so irregular that no period or damping constant could pos-
sib~ be obtained . Even though the model was disturbed on~ in pitch, 
qui te large and irregular values of side force were induced . Figure 4 
also indicates that the steady- state roll rate at 5 = 0 . i s much greater 
than when 5 = 4.9° . This was also the case with the much slower rolling 
model of reference 1 . This means that either the roll damping was 
increased, because the roll caused a change in the downwash pattern over 
the wing , or the aileron effectiveness was reduced because of the higher 
angle of attack associated with the 4.90 control deflection . In figure 4 
the oscillation on the roll rate trace immediate~ following control 
motion from 00 to 4.90 is evidence of rolling moment due to combined 
angle of attack and sideslip and is more noticeable at the lower Mach 
numbers . 

Reduction of the data was carried out by use of the method of refer­
ence 1 which consisted of plotting CN against Cy for each of the 
control pulses and, after accounting for the trim as well as pOSSible, 
developing time histories of CR . Because reference 1 showed that at 

very low roll rates the damped harmonic motion effective~ took place 
in the plane in space in which the step disturbance was created, it was 
decided to investigate if that condition applied also to this model which 
rolled at a much higher rate . For this ana~sis an axis system was used 
similar to that referred to in reference 3 as "pseudo- stability axes" 
for missiles having 900 rotational symmetry . This is the same as a body 
axis system except that the y - and Z- axes do not roll with the model . 
For the ana~sis considered here the position of the XZ plane coincides 
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with the XZ plane of a body axis system at the instant the control sur­
face is given the step input, but holds this position in space (except 
for translations of the model in which case the whole axis system trans­
lates) during the analysis of that entire pulse. The roll position of 
the model at any time during a pulse as measured from its roll attitude 
at the beginning of that pulse was determined by integration of the meas­
ured roll rate. The values of CN and Cy from the body axis system 

were then converted to CN and Cy of the pseudo-stability axis system, 

designated CNS and CyS' respectively, by the following relationships: 

Cy sin ¢ 

Cys = CN sin ¢ + Cy cos ¢ 

If the damped harmonic motion resulting from the step control input 
remained in a plane it must be in the XZ plane of the pseudo-stability 
axis system. For this condition if the model had perfect symmetry such 
that it would trim out at CN = 0, Cy = 0, CyS would always be zero. 

If, however, the model had asymmetry (such as misalinement or deflected 
control surfaces) a plot of Cys against ¢ would be a sine wave having 

its maxima when the asymmetry is in the IT plane and being zero when the 
asymmetry is in the XZ plane. Sample plots of CyS against ¢ are pre-

sented in figure 5. The values of CNtrim and CYtrim are the values 

of Cys at ¢ = 900 and ¢ = 00
, respectively. The irregularity in 

the curve of Cys against ¢ is evidence that the actual motion is not 

entirely in the XZ plane. This irregularity became more pronounced as 
the Mach number decreased, and thus increased the inaccuracies in deter­
mining CNtrim and CYtrim. 

The term CNS is made up partly of CN due to asymmetry and partly 

of CN due to the pitching motion. The value of ~NS' which is that 

part of CNS due to the pitching motion, was determined by the following 

relationship: 

Values of CR and ~NS against time are shown in figure 6 for three 

typical pulses. The solid curve was obtained by use of the method of 
reference 1 and the circled points were obtained by assuming the response 
to the step input was entirely in the XZ plane of the pseudo-stability 
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axis system. The agreement was good for the first four pulses where 
~/rn was less than about 0.3. Two of these pulses are shown in fig-

9 

ure 6 ( a ) and figure 6(b ). For the remaini ng pulses , however , of which 
figure 6 ( c ) is typical, the agreement was rather poor. The gr eater 
amplitude of oscillation and l ower damping constant at the lower Mach 
numbers caused much more energy of the pitching oscillation from the 
previous pulse to remain when the pitch controls moved abrupt~ to the 
new position . As the Mach number decredsed, the roll rate increased 
somewhat so that the model r o l led thr ugh about 2700 during each pulse . 
Rolling through 900 or 2700 per pulf _ means that the space pos ition of 
the XY plane (pseudo- stability axis system) for one pulse had about the 
same orientation as the XZ plane from the previous pulse . Thi s prevented 
any possibility of the pitching motion r emaining in the XZ plane . This 
could have been avoided by decreasing the f r equency of the pulses so 
that the oscillation which resulted from one pulse would have decayed 
to a small amplitude before the next pulse started . However , existing 
theory on rolling missiles such as reference 4 does indicate that at 
these higher values of ~/rn the pitching motion created by the step 
input would move appreciab~ out of the XZ plane even though the pitching 
motions from the previous pulse were complete~ damped . 

Normal Force Due to Angle of Attack 

TYPical plots of CN against a are presented in figure 7. The 
plots show a lower slope for values of a between 0° and _20 than at 
values of a more negative than _30 • Unpublished wind- tunnel data also 
show this nonlinearity as do the data from the model of reference 1 . 
Since ~ was not measured on this model , it was not possible to make 
plots of Cy against ~ or en against resultant angle . Average slopes 
were measured at a ~ 00 and a ~ -40 and are presented as symbols in 
figure 8. The solid lines in figure 8 are values of C~ obtained from 

the model of reference 1 . I t should be noted that CLa is presented in 

reference 1 instead of the p l ot of CNa presented here . Figure 8 shows 

very good agreement for CNa between the two models at a ~ 00 and 

5 = 00 , but considerab~ higher values of CNa for the present rolling 

model than for the slow~ rolling model of reference 1 when a ~ -40 

and 5 = 4 . 90 • I nspection of the data from the model reported in refer­
ence 1 showed that CNa was the same value at a ~ 00 whet her 5 = 00 

or 5 = 4.8° . However, as may be seen in figure 8 for the faster rolling 
model at a ~ 0°, CNa is much greater when 5 = 4 . 9° than when 5 = 0° . 

Because the roll rates are greater at the pulses when 5 = 0 0 where the 
agreement between the two models is very good it is believed that the 
contribution of the Magnus force coefficients to the total CN is small 
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and that neglect of these Magnus forces in reducing the data is not the 
reason for the greater value of CN~ obtained for the faster rolling 

model. The greater CN~ appears therefore to be a direct result of the 

combination of asymmetry (due to the control deflection) and roll rate • 

Pitching Moment Due to Angle of Attack 

The plots of CR against time shown in figure 5 were typical of 
damped harmonic motion. The damped natural frequency variation with 
Mach number is shown in figure 9. The pitching-moment derivative ~ 
was derived from the faired values of ro and is presented as the symbols 
of figure 10. The solid lines on figure 10 are taken from reference 1 . 
The agreement is very good for the 5 = 00 pulses, but the values of Cma 
for the 5 = 4.90 pulses are usually much less from the model with the 
greater roll rate . The ~ values for the first pulse (5 = 4.90

, 

M = 1 . 73) appear to be approximately on an extrapolation of the curve 
from reference 1. Figure 4 shows that the roll rate is much lower during 
this pulse than during any other pulse . Using the same reasoning as 
for CNa, that the Magnus terms are probably small because of the good 

agreement at 5 = 00 , the low values of ~ obtained for the rolling 

model must be due to a combination of asymmetry and roll rate . 

Damping 

The exponential damping constant b is presented in figure 11 as 
a function of Mach number . The solid lines are taken from reference 1. 
Direct comparison of damping constant for the two models is possible 
because of the similarity of the mass characteristics of the two models 
and the similar atmospheric conditions experienced during their flights. 
The test points for the faster rolling model are widely scattered . It 
should be noted however that if the values of b over a pulse had been 
averaged instead of plotted as individual points the agreement would 
have looked fairly good. The test points indicate that the damping is 
greater at the greater amplitudes but this may not be true . The tech­
nique used for dete~ining the damping assumes that the model passes 
through CN

trim 
and CYtrim at the same instant . When this is not the 

case it is virtually impossible to determine the actual trim point, 
especially with the limited number of cycles available at the low Mach 
numbers. This uncertainty of the trim is without doubt a major cause 
of the scatter of test points on figure 11. 
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Control Effectiveness 

The effectiveness of the controls in producing lift is presented 
in f i gure 12 . Because of the variation in normal -force trim over a pul se 
during the present test it was necessary to use methods of determining 
CND different from those used in reference 1. One method used was to 

take the CN value at a ~ 10 (obtained from plots of CN against a ) 
for 5 ~ 00 and 5 ~ 4.90 and plot it against M, fairing a curve for 
each of the 5 positions . The difference between the two curves is the 
CN due to 5 ~ 4.90

• The second method involved the use of CN values 
just before and after the control surface changed position with precau­
tions taken to keep within the frequency response limitations of the 
accelerometer . The ~N/DO was then obtained from the relationship : 

D.CNQDO ~ D.CN - CNafu, where llCN and fu refer to the change in CN 

or a between the point before and point after the control surface 
motion . The points wer e chosen so that fu was very small in order to 
obtain better accuracy for ~N/DO . Test points for these two methods 
are shown in figure 12 and the agreement between them is good . Agr ee­
ment with values of ~N/DO from reference 1 is fair and would indicate 
no great variation of ~N/DO due to roll rate . 

Variation of control- surface pitching effectiveness with Mach number 
is presented in figure 13 . This was obtained by multip~ing values 
of ~N/DO by the distance from the center of gravity to the control 
surface hinge line in body diameters . No comparison is made with r efer­
ence 1 since the values on figure 13 are mere~ the values on figure 12 
multiplied by a constant . 

CONCWSI ONS 

Results from the flight test of a Hughes Falcon, "c" configuration, 
missile which rolled at about 5 radians per second when compared with 
the results from a similar model , that rolled at a much lower rate , 
indicated : 

1 . Stability derivatives m~ be obtained from a symmetrical rolling 
model where ~/(J.) (that is, Roll rate ) is about 0 . 3 or less but 

Pitch frequency 
damping data will have considerab~ more scatter than for a nonrolling 
model. 

2 . It would facilitate reduction of stability data if the oscil­
lations from one disturbance are allowed to dec~ to a small amplitude 
before the next disturbance occurs . 
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3. The oscillations will essentially take place in a plane in space 
if the input is rapid and the value of ~/(J) low . 

4. The value of the normal- force derivative CNa for the faster 

rolling model was the same as for the slower rolling model at 00 control 
deflection but was much greater for the faster rolling model at 4 . 90 con­
trol deflection . 

5 . The value of the pitching-moment derivative Cma as obtained 

from the period of the oscillations was the same for the faster rolling 
model as for the slower rolling model at 00 control deflection but was 
less for the faster rolling model at 4.90 control deflection. 

6 . Roll rate causes no great change in the normal force due to 
elevator deflection . 
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Fi gure 11 . - Variation of exponential damping constant with Mach number . 
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Figure 12 .- Variation of normal force per unit control deflect ion with 
Mach number . 
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Figure 13.- Var i ation of control-surface pitching effectiveness with Mach 
number. 


