In drug discovery research there is a clear and urgent need for non-invasive
detection of cell membrane ion channel operation with wide-field capability.
Existing techniques are generally invasive, require specialized nano
structures, or are only applicable to certain ion channel species. We show that
quantum nanotechnology has enormous potential to provide a novel solution to
this problem. The nitrogen-vacancy (NV) centre in nano-diamond is currently of
great interest as a novel single atom quantum probe for nanoscale processes.
However, until now, beyond the use of diamond nanocrystals as fluorescence
markers, nothing was known about the quantum behaviour of a NV probe in the
complex room temperature extra-cellular environment. For the first time we
explore in detail the quantum dynamics of a NV probe in proximity to the ion
channel, lipid bilayer and surrounding aqueous environment. Our theoretical
results indicate that real-time detection of ion channel operation at
millisecond resolution is possible by directly monitoring the quantum
decoherence of the NV probe. With the potential to scan and scale-up to an
array-based system this conclusion may have wide ranging implications for
nanoscale biology and drug discovery.Comment: 7 pages, 6 figure