912 research outputs found

    Recessive Inheritance of Congenital Hydrocephalus With Other Structural Brain Abnormalities Caused by Compound Heterozygous Mutations in ATP1A3

    Get PDF
    Background: ATP1A3 encodes the α3 subunit of the Na+/K+ ATPase, a fundamental ion-transporting enzyme. Primarily expressed in neurons, ATP1A3 is mutated in several autosomal dominant neurological diseases. To our knowledge, damaging recessive genotypes in ATP1A3 have never been associated with any human disease. Atp1a3 deficiency in zebrafish results in hydrocephalus; however, no known association exists between ATP1A3 and human congenital hydrocephalus (CH). / Methods: We utilized whole-exome sequencing (WES), bioinformatics, and computational modeling to identify and characterize novel ATP1A3 mutations in a patient with CH. We performed immunohistochemical studies using mouse embryonic brain tissues to characterize Atp1a3 expression during brain development. / Results: We identified two germline mutations in ATP1A3 (p. Arg19Cys and p.Arg463Cys), each of which was inherited from one of the patient’s unaffected parents, in a single patient with severe obstructive CH due to aqueductal stenosis, along with open schizencephaly, type 1 Chiari malformation, and dysgenesis of the corpus callosum. Both mutations are predicted to be highly deleterious and impair protein stability. Immunohistochemical studies demonstrate robust Atp1a3 expression in neural stem cells (NSCs), differentiated neurons, and choroid plexus of the mouse embryonic brain. / Conclusion: These data provide the first evidence of a recessive human phenotype associated with mutations in ATP1A3, and implicate impaired Na+/K+ ATPase function in the pathogenesis of CH

    VEGF and Delta-Notch: interacting signalling pathways in tumour angiogenesis

    Get PDF
    Tumour angiogenesis has become an important target for antitumour therapy, with most current therapies aimed at blocking the VEGF pathway. However, not all tumours are responsive to VEGF blockers, and some tumours that are responsive initially may become resistant during the course of treatment, thus there is a need to explore other angiogenesis signalling pathways. Recently, the Delta-Notch pathway, and particularly the ligand Delta-like 4 (Dll4), was identified as a new target in tumour angiogenesis. An important feature in angiogenesis is the manifold ways in which the VEGF and Delta-Notch pathways interact. The emerging picture is that the VEGF pathway acts as a potent upstream activating stimulus for angiogenesis, whereas Delta-Notch helps to guide cell fate decisions that appropriately shape the activation. Here we review the two signalling pathways and what is currently known about the ways in which they interact during tumour angiogenesis

    Observation and study of baryonic B decays: B -> D(*) p pbar, D(*) p pbar pi, and D(*) p pbar pi pi

    Get PDF
    We present a study of ten B-meson decays to a D(*), a proton-antiproton pair, and a system of up to two pions using BaBar's data set of 455x10^6 BBbar pairs. Four of the modes (B0bar -> D0 p anti-p, B0bar -> D*0 p anti-p, B0bar -> D+ p anti-p pi-, B0bar -> D*+ p anti-p pi-) are studied with improved statistics compared to previous measurements; six of the modes (B- -> D0 p anti-p pi-, B- -> D*0 p anti-p pi-, B0bar -> D0 p anti-p pi- pi+, B0bar -> D*0 p anti-p pi- pi+, B- -> D+ p anti-p pi- pi-, B- -> D*+ p anti-p pi- pi-) are first observations. The branching fractions for 3- and 5-body decays are suppressed compared to 4-body decays. Kinematic distributions for 3-body decays show non-overlapping threshold enhancements in m(p anti-p) and m(D(*)0 p) in the Dalitz plots. For 4-body decays, m(p pi-) mass projections show a narrow peak with mass and full width of (1497.4 +- 3.0 +- 0.9) MeV/c2, and (47 +- 12 +- 4) MeV/c2, respectively, where the first (second) errors are statistical (systematic). For 5-body decays, mass projections are similar to phase space expectations. All results are preliminary.Comment: 28 pages, 90 postscript figures, submitted to LP0

    Search for rare quark-annihilation decays, B --> Ds(*) Phi

    Full text link
    We report on searches for B- --> Ds- Phi and B- --> Ds*- Phi. In the context of the Standard Model, these decays are expected to be highly suppressed since they proceed through annihilation of the b and u-bar quarks in the B- meson. Our results are based on 234 million Upsilon(4S) --> B Bbar decays collected with the BABAR detector at SLAC. We find no evidence for these decays, and we set Bayesian 90% confidence level upper limits on the branching fractions BF(B- --> Ds- Phi) Ds*- Phi)<1.2x10^(-5). These results are consistent with Standard Model expectations.Comment: 8 pages, 3 postscript figues, submitted to Phys. Rev. D (Rapid Communications

    Nanomechanics of individual aerographite tetrapods

    Get PDF
    R.A., O.L. and K.S. would like to thank the German Research Foundation (DFG) for the financial support under schemes AD 183/17-1 and SFB 986-TP-B1, respectively, and the Graphene FET Flagship. R.M. and D.E. would like to thank for financial support from Latvian Council of Science, no. 549/2012. N.M.P. is supported by the European Research Council (ERC PoC 2015 SILKENE no. 693670) and by the European Commission H2020 under the Graphene Flagship (WP14 ‘Polymer Composites’, no. 696656) and under the FET Proactive (‘Neurofibres’ no. 732344). S.S. acknowledges support from SILKENE

    Increased Birth Weight Associated with Regular Pre-Pregnancy Deworming and Weekly Iron-Folic Acid Supplementation for Vietnamese Women

    Get PDF
    Low birth weight is an important risk factor for neonatal and infant morbidity and mortality and may impact on growth and development. Maternal iron deficiency anaemia contributes to intrauterine growth restriction and low birth weight. Hookworm infections and an iron-depleted diet may lead to iron deficiency anaemia, and both are common in many developing countries. A pilot program of deworming and weekly iron-folic acid supplementation for non-pregnant women aiming to prevent iron deficiency was implemented in northern Vietnam. We compared the birth weight of babies born to women who had had access to the intervention to babies born in districts where the intervention had not been implemented. The mean birth weight of the intervention districts' babies was 124 g more than the control districts' babies; the prevalence of low birth weight was also reduced. These results suggest that providing women with deworming and weekly iron-folic acid supplements before pregnancy is associated with increased birth weight in rural Vietnam. This intervention was provided as a health system integrated program which could be replicated in other at-risk rural areas. If so it could increase the impact of prenatal and antenatal programs, improving the health of both women and newborns

    Two Notch Ligands, Dll1 and Jag1, Are Differently Restricted in Their Range of Action to Control Neurogenesis in the Mammalian Spinal Cord

    Get PDF
    Notch signalling regulates neuronal differentiation in the vertebrate nervous system. In addition to a widespread function in maintaining neural progenitors, Notch signalling has also been involved in specific neuronal fate decisions. These functions are likely mediated by distinct Notch ligands, which show restricted expression patterns in the developing nervous system. Two ligands, in particular, are expressed in non-overlapping complementary domains of the embryonic spinal cord, with Jag1 being restricted to the V1 and dI6 progenitor domains, while Dll1 is expressed in the remaining domains. However, the specific contribution of different ligands to regulate neurogenesis in vertebrate embryos is still poorly understood.In this work, we investigated the role of Jag1 and Dll1 during spinal cord neurogenesis, using conditional knockout mice where the two genes are deleted in the neuroepithelium, singly or in combination. Our analysis showed that Jag1 deletion leads to a modest increase in V1 interneurons, while dI6 neurogenesis was unaltered. This mild Jag1 phenotype contrasts with the strong neurogenic phenotype detected in Dll1 mutants and led us to hypothesize that neighbouring Dll1-expressing cells signal to V1 and dI6 progenitors and restore neurogenesis in the absence of Jag1. Analysis of double Dll1;Jag1 mutant embryos revealed a stronger increase in V1-derived interneurons and overproduction of dI6 interneurons. In the presence of a functional Dll1 allele, V1 neurogenesis is restored to the levels detected in single Jag1 mutants, while dI6 neurogenesis returns to normal, thereby confirming that Dll1-mediated signalling compensates for Jag1 deletion in V1 and dI6 domains.Our results reveal that Dll1 and Jag1 are functionally equivalent in controlling the rate of neurogenesis within their expression domains. However, Jag1 can only activate Notch signalling within the V1 and dI6 domains, whereas Dll1 can signal to neural progenitors both inside and outside its domains of expression

    Predictive Process Monitoring Methods: Which One Suits Me Best?

    Full text link
    Predictive process monitoring has recently gained traction in academia and is maturing also in companies. However, with the growing body of research, it might be daunting for companies to navigate in this domain in order to find, provided certain data, what can be predicted and what methods to use. The main objective of this paper is developing a value-driven framework for classifying existing work on predictive process monitoring. This objective is achieved by systematically identifying, categorizing, and analyzing existing approaches for predictive process monitoring. The review is then used to develop a value-driven framework that can support organizations to navigate in the predictive process monitoring field and help them to find value and exploit the opportunities enabled by these analysis techniques
    corecore