365 research outputs found
Search for time-dependent B0s - B0s-bar oscillations using a vertex charge dipole technique
We report a search for B0s - B0s-bar oscillations using a sample of 400,000
hadronic Z0 decays collected by the SLD experiment. The analysis takes
advantage of the electron beam polarization as well as information from the
hemisphere opposite that of the reconstructed B decay to tag the B production
flavor. The excellent resolution provided by the pixel CCD vertex detector is
exploited to cleanly reconstruct both B and cascade D decay vertices, and tag
the B decay flavor from the charge difference between them. We exclude the
following values of the B0s - B0s-bar oscillation frequency: Delta m_s < 4.9
ps-1 and 7.9 < Delta m_s < 10.3 ps-1 at the 95% confidence level.Comment: 18 pages, 3 figures, replaced by version accepted for publication in
Phys.Rev.D; results differ slightly from first versio
Measurement of D-s(+) and D-s(*+) production in B meson decays and from continuum e(+)e(-) annihilation at √s=10.6 GeV
This is the pre-print version of the Article. The official published version can be accessed from the links below. Copyright @ 2002 APSNew measurements of Ds+ and Ds*+ meson production rates from B decays and from qq̅ continuum events near the Υ(4S) resonance are presented. Using 20.8 fb-1 of data on the Υ(4S) resonance and 2.6 fb-1 off-resonance, we find the inclusive branching fractions B(B⃗Ds+X)=(10.93±0.19±0.58±2.73)% and B(B⃗Ds*+X)=(7.9±0.8±0.7±2.0)%, where the first error is statistical, the second is systematic, and the third is due to the Ds+→φπ+ branching fraction uncertainty. The production cross sections σ(e+e-→Ds+X)×B(Ds+→φπ+)=7.55±0.20±0.34pb and σ(e+e-→Ds*±X)×B(Ds+→φπ+)=5.8±0.7±0.5pb are measured at center-of-mass energies about 40 MeV below the Υ(4S) mass. The branching fractions ΣB(B⃗Ds(*)+D(*))=(5.07±0.14±0.30±1.27)% and ΣB(B⃗Ds*+D(*))=(4.1±0.2±0.4±1.0)% are determined from the Ds(*)+ momentum spectra. The mass difference m(Ds+)-m(D+)=98.4±0.1±0.3MeV/c2 is also measured.This work was supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF (Germany), INFN (Italy), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the Swiss NSF, A. P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation
A Study of B0 -> J/psi K(*)0 pi+ pi- Decays with the Collider Detector at Fermilab
We report a study of the decays B0 -> J/psi K(*)0 pi+ pi-, which involve the
creation of a u u-bar or d d-bar quark pair in addition to a b-bar -> c-bar(c
s-bar) decay. The data sample consists of 110 1/pb of p p-bar collisions at
sqrt{s} = 1.8 TeV collected by the CDF detector at the Fermilab Tevatron
collider during 1992-1995. We measure the branching ratios to be BR(B0 -> J/psi
K*0 pi+ pi-) = (8.0 +- 2.2 +- 1.5) * 10^{-4} and BR(B0 -> J/psi K0 pi+ pi-) =
(1.1 +- 0.4 +- 0.2) * 10^{-3}. Contributions to these decays are seen from
psi(2S) K(*)0, J/psi K0 rho0, J/psi K*+ pi-, and J/psi K1(1270)
Recommended from our members
A Search for Dark Higgs Bosons
Recent astrophysical and terrestrial experiments have motivated the proposal
of a dark sector with GeV-scale gauge boson force carriers and new Higgs
bosons. We present a search for a dark Higgs boson using 516 fb-1 of data
collected with the BABAR detector. We do not observe a significant signal and
we set 90% confidence level upper limits on the product of the Standard
Model-dark sector mixing angle and the dark sector coupling constant.Comment: 7 pages, 5 postscript figures, published version with improved plots
for b/w printin
Ryanodine receptors are part of the myospryn complex in cardiac muscle
The Cardiomyopathy–associated gene 5 (Cmya5) encodes myospryn, a large tripartite motif (TRIM)-related protein found predominantly in cardiac and skeletal muscle. Cmya5 is an expression biomarker for a number of diseases affecting striated muscle and may also be a schizophrenia risk gene. To further understand the function of myospryn in striated muscle, we searched for additional myospryn paralogs. Here we identify a novel muscle-expressed TRIM-related protein minispryn, encoded by Fsd2, that has extensive sequence similarity with the C-terminus of myospryn. Cmya5 and Fsd2 appear to have originated by a chromosomal duplication and are found within evolutionarily-conserved gene clusters on different chromosomes. Using immunoaffinity purification and mass spectrometry we show that minispryn co-purifies with myospryn and the major cardiac ryanodine receptor (RyR2) from heart. Accordingly, myospryn, minispryn and RyR2 co-localise at the junctional sarcoplasmic reticulum of isolated cardiomyocytes. Myospryn redistributes RyR2 into clusters when co-expressed in heterologous cells whereas minispryn lacks this activity. Together these data suggest a novel role for the myospryn complex in the assembly of ryanodine receptor clusters in striated muscle
Postnatal Changes in the Expression Pattern of the Imprinted Signalling Protein XLαs Underlie the Changing Phenotype of Deficient Mice
The alternatively spliced trimeric G-protein subunit XLαs, which is involved in cAMP signalling, is encoded by the Gnasxl transcript of the imprinted Gnas locus. XLαs deficient mice show neonatal feeding problems, leanness, inertia and a high mortality rate. Mutants that survive to weaning age develop into healthy and fertile adults, which remain lean despite elevated food intake. The adult metabolic phenotype can be attributed to increased energy expenditure, which appears to be caused by elevated sympathetic nervous system activity. To better understand the changing phenotype of Gnasxl deficient mice, we compared XLαs expression in neonatal versus adult tissues, analysed its co-localisation with neural markers and characterised changes in the nutrient-sensing mTOR1-S6K pathway in the hypothalamus. Using a newly generated conditional Gnasxl lacZ gene trap line and immunohistochemistry we identified various types of muscle, including smooth muscle cells of blood vessels, as the major peripheral sites of expression in neonates. Expression in all muscle tissues was silenced in adults. While Gnasxl expression in the central nervous system was also developmentally silenced in some midbrain nuclei, it was upregulated in the preoptic area, the medial amygdala, several hypothalamic nuclei (e.g. arcuate, dorsomedial, lateral and paraventricular nuclei) and the nucleus of the solitary tract. Furthermore, expression was detected in the ventral medulla as well as in motoneurons and a subset of sympathetic preganglionic neurons of the spinal cord. In the arcuate nucleus of Gnasxl-deficient mice we found reduced activity of the nutrient sensing mTOR1-S6K signalling pathway, which concurs with their metabolic status. The expression in these brain regions and the hypermetabolic phenotype of adult Gnasxl-deficient mice imply an inhibitory function of XLαs in energy expenditure and sympathetic outflow. By contrast, the neonatal phenotype of mutant mice appears to be due to a transient role of XLαs in muscle tissues
Metabolic effects of low glycaemic index diets
The persistence of an epidemic of obesity and type 2 diabetes suggests that new nutritional strategies are needed if the epidemic is to be overcome. A promising nutritional approach suggested by this thematic review is metabolic effect of low glycaemic-index diet
Dissociable effects of monoamine reuptake inhibitors on distinct forms of impulsive behavior in rats
Sleep disturbances in highly stress reactive mice: Modeling endophenotypes of major depression
<p>Abstract</p> <p>Background</p> <p>Neuronal mechanisms underlying affective disorders such as major depression (MD) are still poorly understood. By selectively breeding mice for high (HR), intermediate (IR), or low (LR) reactivity of the hypothalamic-pituitary-adrenocortical (HPA) axis, we recently established a new genetic animal model of extremes in stress reactivity (SR). Studies characterizing this SR mouse model on the behavioral, endocrine, and neurobiological levels revealed several similarities with key endophenotypes observed in MD patients. HR mice were shown to have changes in rhythmicity and sleep measures such as rapid eye movement sleep (REMS) and non-REM sleep (NREMS) as well as in slow wave activity, indicative of reduced sleep efficacy and increased REMS. In the present study we were interested in how far a detailed spectral analysis of several electroencephalogram (EEG) parameters, including relevant frequency bands, could reveal further alterations of sleep architecture in this animal model. Eight adult males of each of the three breeding lines were equipped with epidural EEG and intramuscular electromyogram (EMG) electrodes. After recovery, EEG and EMG recordings were performed for two days.</p> <p>Results</p> <p>Differences in the amount of REMS and wakefulness and in the number of transitions between vigilance states were found in HR mice, when compared with IR and LR animals. Increased frequencies of transitions from NREMS to REMS and from REMS to wakefulness in HR animals were robust across the light-dark cycle. Detailed statistical analyses of spectral EEG parameters showed that especially during NREMS the power of the theta (6-9 Hz), alpha (10-15 Hz) and eta (16-22.75 Hz) bands was significantly different between the three breeding lines. Well defined distributions of significant power differences could be assigned to different times during the light and the dark phase. Especially during NREMS, group differences were robust and could be continuously monitored across the light-dark cycle.</p> <p>Conclusions</p> <p>The HR mice, i.e. those animals that have a genetic predisposition to hyper-activating their HPA axis in response to stressors, showed disturbed patterns in sleep architecture, similar to what is known from depressed patients. Significant alterations in several frequency bands of the EEG, which also seem to at least partly mimic clinical observations, suggest the SR mouse lines as a promising animal model for basic research of mechanisms underlying sleep impairments in MD.</p
On the typology and the worship status of sacred trees with a special reference to the Middle East
This article contains the reasons for the establishment of sacred trees in Israel based on a field study. It includes 97 interviews with Muslim and Druze informants. While Muslims (Arabs and Bedouins) consider sacred trees especially as an abode of righteous figures' (Wellis') souls or as having a connection to their graves, the Druze relate sacred trees especially to the events or deeds in the lives of prophets and religious leaders. A literary review shows the existence of 24 known reasons for the establishment of sacred trees worldwide, 11 of which are known in Israel one of these is reported here for the first time. We found different trends in monotheistic and polytheistic religions concerning their current worship of sacred trees
- …