273 research outputs found

    Repellent and Attractant Guidance Cues Initiate Cell Migration by Distinct Rear-Driven and Front-Driven Cytoskeletal Mechanisms.

    Get PDF
    Attractive and repulsive cell guidance is essential for animal life and important in disease. Cell migration toward attractants dominates studies [1-8], but migration away from repellents is important in biology yet relatively little studied [5, 9, 10]. It is widely held that cells initiate migration by protrusion of their front [11-15], yet this has not been explicitly tested for cell guidance because cell margin displacement at opposite ends of the cell has not been distinguished for any cue. We argue that protrusion of the front, retraction of the rear, or both together could in principle break cell symmetry and start migration in response to guidance cues [16]. Here, we find in the Dictyostelium model [6] that an attractant-cAMP-breaks symmetry by causing protrusion of the front of the cell, whereas its repellent analog-8CPT-breaks symmetry by causing retraction of the rear. Protrusion of the front of these cells in response to cAMP starts with local actin filament assembly, while the delayed retraction of the rear is independent of both myosin II polarization and of motor-based contractility. On the contrary, myosin II accumulates locally in the rear of the cell in response to 8CPT, anticipating retraction and required for it, while local actin assembly is delayed and couples to delayed protrusion at the front. These data reveal an important new concept in the understanding of cell guidance

    Shot noise in mesoscopic systems

    Get PDF
    This is a review of shot noise, the time-dependent fluctuations in the electrical current due to the discreteness of the electron charge, in small conductors. The shot-noise power can be smaller than that of a Poisson process as a result of correlations in the electron transmission imposed by the Pauli principle. This suppression takes on simple universal values in a symmetric double-barrier junction (suppression factor 1/2), a disordered metal (factor 1/3), and a chaotic cavity (factor 1/4). Loss of phase coherence has no effect on this shot-noise suppression, while thermalization of the electrons due to electron-electron scattering increases the shot noise slightly. Sub-Poissonian shot noise has been observed experimentally. So far unobserved phenomena involve the interplay of shot noise with the Aharonov-Bohm effect, Andreev reflection, and the fractional quantum Hall effect.Comment: 37 pages, Latex, 10 figures (eps). To be published in "Mesoscopic Electron Transport," edited by L. P. Kouwenhoven, G. Schoen, and L. L. Sohn, NATO ASI Series E (Kluwer Academic Publishing, Dordrecht

    Supporting adherence for people starting a new medication for a long-term condition through community pharmacies: a pragmatic randomised controlled trial of the New Medicine Service

    Get PDF
    Objective: To examine the effectiveness of the New Medicine Service (NMS), a national community pharmacy service to support medicines-taking in people starting a new medicine for a long-term condition, compared with normal practice. Methods: Pragmatic patient-level parallel randomised controlled trial, in 46 community pharmacies in England. Patients 1:1 block randomisation stratified by drug/disease group within each pharmacy. 504 participants (NMS: 251) aged 14 years and over, identified in the pharmacy on presentation of a prescription for asthma/chronic obstructive pulmonary disease, hypertension, type 2 diabetes or an anticoagulant/antiplatelet agent. NMS intervention: One consultation 7–14 days after presentation of prescription followed by another 14–21 days thereafter to identify problems with treatment and provide support if needed. Controls received normal practice. Adherence, defined as missing no doses without the advice of a medical professional in the previous 7 days, was assessed through patient self-report at 10 weeks. Intention-to-treat analysis was employed, with outcome adjusted for recruiting pharmacy, NMS disease category, age, sex and medication count. Cost to the National Health Service (NHS) was collected. Results: At 10 weeks, 53 patients had withdrawn and 443 (85%) patients were contacted successfully by telephone. In the unadjusted analysis of 378 patients still taking the initial medicine, 61% (95% CI 54% to 67%) and 71% (95% CI 64% to 77%) patients were adherent in the normal practice and NMS arms, respectively (p=0.04 for difference). In the adjusted intention-to-treat analysis, the OR for increased adherence was 1.67 (95% CI 1.06 to 2.62; p=0.027) in favour of the NMS arm. There was a general trend to reduced NHS costs, albeit, statistically non-significant, for the NMS intervention: saving £21 (95% CI −£59 to £100, p=0.128) per patient. Conclusions: The NMS significantly increased the proportion of patients adhering to their new medicine by about 10%, compared with normal practice

    Angiotensin-(1-7)/MasR axis promotes migration of monocytes/macrophages with a regulatory phenotype to perform phagocytosis and efferocytosis.

    Get PDF
    Nonphlogistic migration of macrophages contributes to the clearance of pathogens and apoptotic cells, a critical step for the resolution of inflammation and return to homeostasis. Angiotensin-(1-7) [Ang-(1-7)] is a heptapeptide of the renin-angiotensin system that acts through Mas receptor (MasR). Ang-(1-7) has recently emerged as a novel proresolving mediator, yet Ang-(1-7) resolution mechanisms are not fully determined. Herein, Ang-(1-7) stimulated migration of human and murine monocytes/macrophages in a MasR-, CCR2-, and MEK/ERK1/2-dependent manner. Pleural injection of Ang-(1-7) promoted nonphlogistic mononuclear cell influx alongside increased levels of CCL2, IL-10, and macrophage polarization toward a regulatory phenotype. Ang-(1-7) induction of CCL2 and mononuclear cell migration was also dependent on MasR and MEK/ERK. Of note, MasR was upregulated during the resolution phase of inflammation, and its pharmacological inhibition or genetic deficiency impaired mononuclear cell recruitment during self-resolving models of LPS pleurisy and E. coli peritonitis. Inhibition/absence of MasR was associated with reduced CCL2 levels, impaired phagocytosis of bacteria, efferocytosis, and delayed resolution of inflammation. In summary, we have uncovered a potentially novel proresolving feature of Ang-(1-7), namely the recruitment of mononuclear cells favoring efferocytosis, phagocytosis, and resolution of inflammation. Mechanistically, cell migration was dependent on MasR, CCR2, and the MEK/ERK pathway

    Coupling changes in cell shape to chromosome segregation

    Get PDF
    Animal cells undergo dramatic changes in shape, mechanics and polarity as they progress through the different stages of cell division. These changes begin at mitotic entry, with cell–substrate adhesion remodelling, assembly of a cortical actomyosin network and osmotic swelling, which together enable cells to adopt a near spherical form even when growing in a crowded tissue environment. These shape changes, which probably aid spindle assembly and positioning, are then reversed at mitotic exit to restore the interphase cell morphology. Here, we discuss the dynamics, regulation and function of these processes, and how cell shape changes and sister chromatid segregation are coupled to ensure that the daughter cells generated through division receive their fair inheritance

    The added value of abnormal regional myocardial function for risk prediction in arrhythmogenic right ventricular cardiomyopathy

    Get PDF
    Aims A risk calculator for individualized prediction of first-time sustained ventricular arrhythmia (VA) in arrhythmogenic right ventricular cardiomyopathy (ARVC) patients has recently been developed and validated (www.ARVCrisk.com). This study aimed to investigate whether regional functional abnormalities, measured by echocardiographic deformation imaging, can provide additional prognostic value. Methods From two referral centres, 150 consecutive patients with a definite ARVC diagnosis, no prior sustained VA, and an echo- and results cardiogram suitable for deformation analysis were included (aged 41 ± 17 years, 50% female). During a median follow-up of 6.3 (interquartile range 3.1–9.8) years, 37 (25%) experienced a first-time sustained VA. All tested left and right ventricular (LV and RV) deformation parameters were univariate predictors for first-time VA. While LV function did not add predictive value in multivariate analysis, two RV deformation parameters did; RV free wall longitudinal strain and regional RV deformation patterns remained independent predictors after adjusting for the calculator-predicted risk [hazard ratio 1.07 (95% CI 1.02–1.11); P = 0.004 and 4.45 (95% CI 1.07–18.57); P = 0.040, respectively] and improved its discriminative value (from C-statistic 0.78 to 0.82 in both; Akaike information criterion change > 2). Importantly, all patients who experienced VA within 5 years from the echocardiographic assessment had abnormal regional RV deformation patterns at baseline. Conclusions This study showed that regional functional abnormalities measured by echocardiographic deformation imaging can further refine personalized arrhythmic risk prediction when added to the ARVC risk calculator. The excellent negative predictive value of normal RV deformation could support clinicians considering the timing of implantable cardioverter defibrillator implantation in patients with intermediate arrhythmic risk

    Tuning the endothelial response: differential release of exocytic cargos from Weibel-Palade bodies.

    Get PDF
    Essentials Endothelial activation initiates multiple processes, including hemostasis and inflammation. The molecules that contribute to these processes are co-stored in secretory granules. How can the cells control release of granule content to allow differentiated responses? Selected agonists recruit an exocytosis-linked actin ring to boost release of a subset of cargo. SUMMARY: Background Endothelial cells harbor specialized storage organelles, Weibel-Palade bodies (WPBs). Exocytosis of WPB content into the vascular lumen initiates primary hemostasis, mediated by von Willebrand factor (VWF), and inflammation, mediated by several proteins including P-selectin. During full fusion, secretion of this large hemostatic protein and smaller pro-inflammatory proteins are thought to be inextricably linked. Objective To determine if secretagogue-dependent differential release of WPB cargo occurs, and whether this is mediated by the formation of an actomyosin ring during exocytosis. Methods We used VWF string analysis, leukocyte rolling assays, ELISA, spinning disk confocal microscopy, high-throughput confocal microscopy and inhibitor and siRNA treatments to demonstrate the existence of cellular machinery that allows differential release of WPB cargo proteins. Results Inhibition of the actomyosin ring differentially effects two processes regulated by WPB exocytosis; it perturbs VWF string formation but has no effect on leukocyte rolling. The efficiency of ring recruitment correlates with VWF release; the ratio of release of VWF to small cargoes decreases when ring recruitment is inhibited. The recruitment of the actin ring is time dependent (fusion events occurring directly after stimulation are less likely to initiate hemostasis than later events) and is activated by protein kinase C (PKC) isoforms. Conclusions Secretagogues differentially recruit the actomyosin ring, thus demonstrating one mechanism by which the prothrombotic effect of endothelial activation can be modulated. This potentially limits thrombosis whilst permitting a normal inflammatory response. These results have implications for the assessment of WPB fusion, cargo-content release and the treatment of patients with von Willebrand disease.British Heart Foundation. Grant Number: PG/15/72/31732. Medical Research Council. Grant Numbers: MC_UU_12018/2, MR/M019179/1

    The Role of Actin Turnover in Retrograde Actin Network Flow in Neuronal Growth Cones

    Get PDF
    The balance of actin filament polymerization and depolymerization maintains a steady state network treadmill in neuronal growth cones essential for motility and guidance. Here we have investigated the connection between depolymerization and treadmilling dynamics. We show that polymerization-competent barbed ends are concentrated at the leading edge and depolymerization is distributed throughout the peripheral domain. We found a high-to-low G-actin gradient between peripheral and central domains. Inhibiting turnover with jasplakinolide collapsed this gradient and lowered leading edge barbed end density. Ultrastructural analysis showed dramatic reduction of leading edge actin filament density and filament accumulation in central regions. Live cell imaging revealed that the leading edge retracted even as retrograde actin flow rate decreased exponentially. Inhibition of myosin II activity before jasplakinolide treatment lowered baseline retrograde flow rates and prevented leading edge retraction. Myosin II activity preferentially affected filopodial bundle disassembly distinct from the global effects of jasplakinolide on network turnover. We propose that growth cone retraction following turnover inhibition resulted from the persistence of myosin II contractility even as leading edge assembly rates decreased. The buildup of actin filaments in central regions combined with monomer depletion and reduced polymerization from barbed ends suggests a mechanism for the observed exponential decay in actin retrograde flow. Our results show that growth cone motility is critically dependent on continuous disassembly of the peripheral actin network

    Discovery of biomarkers for the presence and progression of left ventricular diastolic dysfunction and HEart faiLure with Preserved ejection Fraction in patients at risk for cardiovascular disease: Rationale and design of the HELPFul case-cohort study in a Dutch cardiology outpatient clinic

    Get PDF
    Introduction Left ventricular diastolic dysfunction (LVDD) is a common condition in both sexes that may deteriorate into heart failure (HF) with preserved ejection fraction (pEF), although this seems to happen more often in women than in men. Both LVDD and HFpEF often go unrecognised, necessitating the discovery of biomarkers that aid both the identification of individuals with LVDD at risk of developing HF and identification of individuals most likely to benefit from treatment. Methods and analysis HELPFul is an ongoing case-cohort study at a Dutch cardiology outpatient clinic enrolling patients aged 45 years and older without history of cardiovascular disease, who were referred by the general practitioner for cardiac evaluation. We included a random sample of patients and enriched the cohort with cases (defined as an E/e’ ≥8 measured with echocardiography). Information about medical history, cardiovascular risk factors, electrocardiography, echocardiography, exercise test performance, common carotid intima-media thickness measurement and standard cardiovascular biomarkers was obtained from the routine care data collected by the cardiology outpatient clinic. Study procedure consists of extensive venous blood collection for biobanking and additional standardised questionnaires. Follow-up will consist of standardised questionnaires by mail and linkage to regional and national registries. We will perform cardiac magnetic resonance imaging and coronary CT angiography in a subgroup of patients to investigate the extent of macrovascular and microvascular coronary disease. Ethics and dissemination The study protocol was approved by the Institutional Review Board of the University Medical Center Utrecht. Results will be disseminated through national and international conferences and in peer-reviewed journals in cardiovascular disease
    corecore