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SUMMARY

Attractive and repulsive cell guidance is essential for
animal life and important in disease. Cell migration
toward attractants dominates studies [1–8], but
migration away from repellents is important in
biology yet relatively little studied [5, 9, 10]. It is
widely held that cells initiate migration by protrusion
of their front [11–15], yet this has not been explicitly
tested for cell guidance because cell margin
displacement at opposite ends of the cell has not
been distinguished for any cue.We argue that protru-
sion of the front, retraction of the rear, or both
together could in principle break cell symmetry and
start migration in response to guidance cues [16].
Here, we find in the Dictyostelium model [6] that an
attractant—cAMP—breaks symmetry by causing
protrusion of the front of the cell, whereas its repel-
lent analog—8CPT—breaks symmetry by causing
retraction of the rear. Protrusion of the front of these
cells in response to cAMP starts with local actin fila-
ment assembly, while the delayed retraction of the
rear is independent of both myosin II polarization
and of motor-based contractility. On the contrary,
myosin II accumulates locally in the rear of the cell
in response to 8CPT, anticipating retraction and
required for it, while local actin assembly is delayed
and couples to delayed protrusion at the front. These
data reveal an important new concept in the under-
standing of cell guidance.

RESULTS AND DISCUSSION

To initiate migration, cells must break symmetry (polarize) to

establish a protrusive front and a retractive rear. A priori, it

is not known if attractants and repellents share the same sym-

metry-breaking mechanism. Therefore, to investigate how cells

break symmetry, we used cell margin displacement as a polarity
Current Biology 28, 995–1004, Ma
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marker because it directly reports cell migration without presup-

posing any particular mechanism. In principle, either stable, out-

ward movement of the cell front (initial front protrusion) or stable,

inward movement of the cell rear (initial rear retraction), or both

together, could break cell symmetry and start migration [16].

These alternative mechanisms have very different implications

for our understanding of how cells steer in chemotactic gradients

and communicate between their front and back.

Polarized cytoskeletal forces drive cell polarization. For almost

all cell types, actin filament assembly or bleb formation in the

front of the cell drive protrusion, but in our conditions, blebs

were rare and are not studied, while myosin II motor-based

and other distinct types of contraction can power retraction of

the rear, depending on cellular context [11–15, 17–19]. In the

wild, Dictyostelium discoideum amoebae are guided by both

chemo-attractants and chemo-repellents [20, 21]. Here, we

use the AX2 strain as ‘‘wild-type’’ cells, cyclic AMP (cAMP), a

natural attractant (Figure 1A), and 8-(p-chlorophenylthio)-cAMP

(8CPT-cAMP), an analog of cAMP that repels these cells, herein-

after referred to as 8CPT (Figure 1B) [22]. Strong gradients of

each cue are used in all experiments.

To begin to identify which cytoskeletal-based forces break cell

symmetry and start cell migration, we determined the timing

of the initial, stable front protrusion and rear retraction (Figures

1 and 2). The temporal resolution was 1 s, which readily allows

these events to be distinguished. For clarity, whichever cell

margin displaces first is defined as the ‘‘start of migration’’ (for

reference, 0 s in Figures 1H and 1I), while the start of whole-

cell translocation is when both initial front protrusion and initial

rear retraction have occurred (for reference, from 20 s in Fig-

ure 1H and from 26 s in Figure 1I).

Breaking of Cell Symmetry in Response to cAMP
Attractant and 8CPT Repellent
Dictyostelium, like many other cells, can migrate randomly in

the absence of cell guidance cues. We therefore used a cool-

ing-rewarming protocol that causes most cells to lose polarity,

enabling us to capture their repolarization in response to guid-

ance cues after they had been warmed up [23]. We validated

(Figures S1A–S1F) that this method faithfully recapitulates re-

ported behaviors during polarization of amoeboid cells [1, 24]
rch 19, 2018 ª 2018 The Author(s). Published by Elsevier Ltd. 995
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and other cell types [25–27] that have not been priorly cooled

and rewarmed. In particular, we confirmed [1, 24–27] that the

shape of non-polarized cells can vary (Figures S1A–S1C) and

that unstable protrusions and retractions of the cell periphery

occur prior to polarization but do not break symmetry (Figures

S1D and S1E). Subsequent to this behavior, polarized

displacement of the cell margin breaks symmetry and starts

cell migration (Figures S1D and S1E). We tracked and quanti-

fied the behavior of 87 cells in response to cAMP and 141 cells

in response to 8CPT during the first 200–300 s of their

encounter with the guidance cue (Table S1). Of the cells that

were non-polarized at the start of filming, about one-third

polarized and migrated in the expected direction during the

encounter (Table S1). Most of the remaining cells did not

polarize during the encounter period (Table S1), though a

few moved the wrong way and were disregarded from further

analysis (Table S1).

In response to cAMP, cells formed a stable protrusion toward

the source of the attractant to break symmetry and start migra-

tion (Figures 1C [white, longer arrow] and 1F and Movie S1).

Throughout symmetry breaking (Figures 1H [0 s to +18 s; white,

longer arrow]), there was little or no change in position of the pre-

sumptive cell rear (Figures 1H [compare white and black arrows]

and 1J [compare traces] and Movie S1). This reveals that migra-

tion was initiated by protrusion of the front of the cell in response

to this attractant. Retraction of the rear of the cell was delayed

(Figures 1C, 1H [black, longer arrow], and 1J and Movie S1) by

about 14 s on average (Figure 1G), and then, the whole cell

moved toward the cAMP (Figure 1C [+77 s]).

Conversely, in response to 8CPT, cells broke symmetry and

started migration by retracting part of the cell closest to the re-

pellent (the presumptive cell rear) (Figures 1D, 1E [black, longer

arrow], and 1F and Movie S2). This occurred similarly for cells of

initially flatter (Figure 1D) or rounder (Figure 1E) shape.

Throughout the breaking of symmetry (Figures 1I [0 s to +23 s;

black, longer arrow]), there was little or no movement of the pre-

sumptive cell front (Figures 1I [compare white and black arrows]

and 1K [compare traces] and Movie S2). This shows that repul-

sive migration was initiated by retraction of the cell rear. Protru-

sion of the opposite end of the cell (Figures 1D, 1E, 1I [white,

longer arrow], and 1K) was delayed by about 16 s on average
Figure 1. A Repellent and an Attractant Initiate Cell Movement at Opp

cAMP is an attractant for Dictyostelium cells, and its analog, 8CPT, is a repellen

(A and B) Images from a time-lapse sequence showing cells moving toward a sour

cell migration. Time is relative to the start (0 s) of polarization for the cells in the

(C–E) Boxed cells (A and B) are rotated in (C) and (D). Short and longer white arrow

or larger black arrows indicate initial and new position of the cell rear, respectivel

images for the cell in the box in (A) showing that symmetry is broken by protrusion

cell in the box in (B) (D) and for a cell from another sequence that has distinct initial

the rear of the cell in response to 8CPT.

(F) Comparing types of cell margin displacements that break symmetry in cAMP o

cells [8CPT] from 10–13 experiments per cue). Front, front protrusion; rear, rear

(G) Delay between initial front protrusion and initial rear retraction for cells in (F)

retraction in 8CPT (n = 26 cells). Each value is the mean ± SEM.

(H and I) Earliest visual steps during cell polarization from the sequences in (C) an

throughout the break in symmetry in cAMP (H (0–18 s) or in 8CPT (I) (0–23 s). Arr

(J and K) Time-distance plots of paired cell front and rear margins showing distinc

the cells in (C) and (D), respectively.

AX2 cells were used throughout. Bar (A): 28 mm (A), 30 mm (B), 10 mm (C and H),

See also Figure S1 and Table S1 and Movies S1 and S2.
(Figure 1G), after which the whole cell moved away from the

source of 8CPT (Figures 1D [+71 s] and 1E [+22 s]).

Once the whole cell had started moving, we could not detect

delays between protrusion of the front and retraction of the

rear on the same time and imaging scales (Figures S1G and

S1H). This is comparable to other front-rear analysis during cell

migration [26, 28, 29]. Also, during whole-cell movement, the

speeds of front protrusion and rear retraction were essentially

the same, with a ratio of around 1:0 (Figure S1I). Thus, by these

measures, the protrusion and retraction delays that occur as

cells break symmetry are specific to the initiation of migration it-

self and not to any general difference between the front and rear

of the cell.

Cell Turning
In a distinct experimental approach—and one without cell cool-

ing-rewarming—we studied different types of turns (U, reverse,

and lateral) produced when migrating cells are forced to alter di-

rection by changing the position of the chemotactic gradient

(Figure 2) [30–32]. In a U-turn, cells steer around from their front

(observable in left-hand cell, Figure 2C), but do not repolarize

because they keep their original cell front and rear. Alternatively,

just after the gradient is moved, cells stop and typically produce

transient, de-localized protrusions and retractions [30] (observ-

able in right-hand cell, Figure 2C). Cells then repolarize by form-

ing a new front and new rear either lateral to the original direction

(lateral turn) or at roughly 180� (reverse turn).

Cells turn toward repositioned cAMP (Figure 2A) and away

from repositioned 8CPT (Figure 2B). We tracked 86 cells re-

sponding to cAMP and 48 cells responding to 8CPT (Table

S2), of which 95% and 85%, respectively, performed either U-

turns, lateral turns, or reverse turns (quantified in Table S2).

Many cells performed U-turns toward re-positioned cAMP

(Table S2), similar to other reports [30–32]. Of note, hardly any

cells performed U-turns away from the repositioned 8CPT repel-

lent (Table S2), which may reflect a difference in underlying

mechanism.

To turn laterally or reverse toward repositioned cAMP, cells

formed a new protrusion (new front) to break symmetry and start

migration (Figures 2C [and inset; longwhite arrows], 2G, and 2H).

In contrast, to reverse or laterally turn away from repositioned
osite Cell Margins

t.

ce of cAMP (A) and away from a source of 8CPT (B). Arrows indicate direction of

boxes.

s indicate initial and new position of the cell front, respectively. Short and longer

y. Time is relative to the start (0 s) of the break in cell symmetry. (C) Time-lapse

of the front of the cell in response to cAMP. (D and E) Time-lapse images for the

non-polarized shape (E), both showing that symmetry is broken by retraction of

r 8CPT. Plot is proportion of all polarizing cells (n = 24 cells [cAMP] and n = 35

retraction; both, front protrusion and rear retraction start together.

that break symmetry with front protrusion in cAMP (n = 21 cells) and with rear

d (D) showing that cell margin displacement at the opposite cell end is delayed

ows and time are as in (C–E).

t temporal order of their displacement in cAMP (J) compared with 8CPT (K) for

and 11 mm (D, E, and I).
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Figure 2. The Repellent 8CPT Initiates Cell Repolarization at the Opposite End of the Cell to the Attractant cAMP in Turning AX2 Cells

(A and B) Images from a time-lapse showing that cells turn toward repositioned cAMP (A, star) and away from repositioned 8CPT (B, square). Arrows indicate

direction of migration. Time is relative to the start (0 s) of repositioning the guidance cue.

(C–F) Arrows indicate as in Figures 1C–1E. Timewithout brackets is relative to the start (0 s) of cell repolarization. Timewithin brackets is relative to the start (0 s) of

repositioning the guidance cue. U, U-turn (C); rev, reverse cell turn (C and D). (C) Time-lapse images for the two cells indicated with an asterisk in (A). The cell in the

box (C and inset) shows that front protrusion leads repolarization toward cAMP. (D–F) Time-lapse images for the cell at the asterisk in (B) (D) and for a cell from

another sequence (E and F) that has distinct initial shape, both showing that rear retraction leads repolarization away from 8CPT. Squares (F) indicate

repositioning of 8CPT for the cell in (E).

(G) Comparing types of cell margin displacement that repolarize cells during reverse and lateral turns in cAMP or in 8CPT. Plot is proportion of all repolarizing cells

(n = 28 cells [cAMP] and n = 36 cells [8CPT] from 13–18 reorientation experiments per cue). Abbreviations are as in Figure 1F. Additional cells performed U-turns,

and these do not repolarize to turn.

(H) Delay between initial front protrusion and initial rear retraction for the cells in (G) that start cell repolarization with front protrusion in cAMP and with rear

retraction in 8CPT. Each value is the mean ± SEM.

Bar (A): 16.7 mm (A and B), 10 mm (C–E), and 6.7 mm (C inset).

See also Table S2.
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8CPT, cells retracted a new rear to break symmetry and start

migration (Figures 2D, 2E [long black arrows], 2G, and 2H).

This occurred similarly for migrating cells of initially different

shape (compare Figures 2D and 2E).

Hence, our findings on cell polarization are similar in two sepa-

rate experimental systems in Dictyostelium cells (Figures 1 and

2). That retraction breaks symmetry predicts that contractile

force at the rear, rather than actin assembly at the front, initiates

migration of these cells away from the repellent, 8CPT.

Actin Assembly: Spatial Polarization at the Front
To test this idea directly, we determined the dynamics of actin fil-

aments (Figure 3) and myosin II (Figures 4A–4H) in live cells.

In response to cAMP attractant, actin filaments increased

within a discrete zone on the side of the cell-facing attrac-

tant—the prospective front. This occurred a few seconds prior

to the breaking of symmetry (Figures 3A [�1 s] and 3D). Corre-

lated with further filament increase, this actin-rich zone then

protruded to break symmetry and start cell migration (Figures

3A [+9 s, +34 s], and 3D–3F and Movie S3). This response was

specific to the front, as net increases in actin filaments were

not detected elsewhere in the cell (Figures 3A [compare panels]

and 3F [compare traces]). These data show that in response to

cAMP and in line with other work on actin [33] and other relevant

molecules [34, 35], migration starts with an increase in actin as-

sembly at the prospective front of the cell.

In contrast, in response to 8CPT, actin filaments did not in-

crease in the prospective cell front until an average 13 s after

retraction of the rear had already broken symmetry (Figures

3B–3D and 3G and Movie S4). This delayed F-actin polarization

became evident during the later phases of rear retraction (Fig-

ures 3B, 3C [+29 s] and 3G [compare traces] and Movie S4).

However, similar to the cAMP case, actin filaments increased

at the cell front a few seconds before the start of protrusion (Fig-

ures 3B, 3C [compare +29 and +30 s], and 3E andMovie S4). We

conclude thatmigration away from the repellent is not initiated by

a spatial bias in actin filament assembly, which instead is linked

to the delayed protrusion of the front of the cell.

Myosin II: Acquisition of Spatial Bias at the Rear
Myosin II is typically diffusely distributed in polarized, amoeboid

cells migrating on a two-dimensional surface with a bias toward
Figure 3. Actin Filaments Polarize to the Front of AX2 Cells in Respons

(A and B) Paired cell and actin filament fluorescence images from a time-lapse sho

symmetry in response to cAMP (A,�1 s) and by 29 s after the breaking of cell symm

(s) without brackets (A and B) is relative to the break in cell symmetry (0 s). Time

(C) Kymograph (time-distance plot) for the cell in (B) showing actin filaments (pink)

front protrusion starts (+30 s) in 8CPT. Note that in 8CPT, actin starts to visibly ac

break in cell symmetry (0 s). Shown is an overlay of paired actin fluorescence and

the dot and white arrow in (B, �1 s). Weaker actin filament fluorescence detecta

(D) Timing of visible actin filament spatial bias relative to the start of polarization of

cells [cAMP] and n = 16 cells [8CPT] from 10 experiments per cue; same source

(E) Comparison of the timing of visible actin filament polarization relative to when

0.4 s and for 8CPT is �3.4 ± 0.9 s.

(F and G) Line scans of F-actin fluorescence for paired rear and front zones showin

the polarizing cells in (A) and (B), respectively. Actin increases before the symme

insets. Raw fluorescence intensities are plotted. Time is relative to the break in c

Bar (A): 10 mm (A and B) and 8.5 mm (C).

See also Movies S3 and S4.

1000 Current Biology 28, 995–1004, March 19, 2018
the rear, whether they are responding to cAMP or 8CPT [22] (Fig-

ure S2A–S2C). However, we discovered differences in timing

and manner of myosin localization during the initial response of

cells to these signals (Figures 4A–4H).

Myosin II only became biased toward the rear of cells exposed

to cAMP about an average 33 s after they broke symmetry by ex-

tending their front (Figure 4A [+75 s] and 4E). Typically, bias was

not detected as the rear started to retract (Figures 4C and 4F) but

developed later during whole-cell translocation (Figures 4A and

4F), increasing 2-fold on average (Figure 4F). This bias toward

the rear is primarily due to a global decrease in the front (Figures

4A [compare panels] and 4F [compare ratios]). Overall, these

data suggest that the spatial bias in myosin II in response to

cAMP is a global polarization event linked to early cell

translocation.

In contrast, myosin II bias at the rear was linked to the symme-

try break (Figures 4B, 4D, 4E, and 4G) and polarized on the side

of the cell facing 8CPT a few seconds before it first retracted

(Figures 4D and 4E). Myosin II fluorescence increased 2-fold

on average (Figure 4G) primarily due to a direct increase within

the rear (Figure 4G [compare ratios]), suggesting that the bias

in myosin II distribution produced in response to 8CPT is a local

polarization event—contrary to the cAMP case. We do not yet

know how myosin II polarizes, and several mechanisms are

plausible. Whatever the mode, presumably, the relatively lower

abundance of F-actin within the rear (evident in Figure 3B) is a

sufficient substrate for myosin II to generate force.

Temporal Order of Actin and Myosin II Polarization
These datamustmean that as cells start migrating, F-actin polar-

izes before myosin II in response to cAMP—as previously re-

ported [33]—and that myosin II polarizes before F-actin in

response to 8CPT. This is precisely what we observed in mea-

surements of the timing of actin and myosin II polarization

directly within the same cell (quantified in Figure 4H).

Importance of Myosin II-Motor Based Contractility
As a final test of mechanism, we assessed Dictyostelium cells

null for myosin II essential light chain (mlcE), which form myosin

II filaments but have little or no motor-based contractility [36].

The importance of myosin II in cell motility depends on the

context [18], but it is agreed that myosin II contractility is not
e to 8CPT Repellent after Symmetry Has Been Broken at the Rear

wing that actin filaments polarize at the cell front 1 s prior to the breaking of cell

etry in response to 8CPT (B, +29 s). Arrows indicate as in Figures 1C–1E. Time

(s) within brackets (B) is relative to the initial front protrusion (0 s).

polarize at the front�27–29 s after initial rear retraction starts and�1–3 s before

cumulate at the front toward the end of initial retraction. Time is relative to the

cell kymograph images. Position of the kymograph is approximately between

ble in (B) is not visible in the kymograph.

the same cell in cAMP or 8CPT gradients. Each value is themean ± SEM; n = 16

films as Figure 1.

the front starts protruding for the cells in (D). Mean ± SEM for cAMP is �2.6 ±

g distinct kinetics of actin filament bias in cAMP (F) compared with 8CPT (G) for

try break in cAMP but afterward in 8CPT. Scan positions are indicated in the

ell symmetry (0 s).
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required for Dictyostelium polarization, migration, and turning in

response to cAMP when the cells move on a two-dimensional

surface [33, 37–42]. The same is true formlcE null cells polarizing

in response to this chemo-attractant cue (Figures 4I, 4K, and 4L).

And further, as with wild-type cells, protrusion of the front initi-

ates migration (Figure 4L). Our observation that a myosin II

spatial bias is not linked to the initial retraction of the rear of cells

moving toward cAMP (Figures 4A, 4C, 4E, and 4F) explains why

myosin II null cells can polarize toward this guidance cue. We

and other groups have identified other modes of contractility

that are independent of myosin II motor [18, 42–46] and suspect

that at least some of these must retract the cell rear—at least

initially when responding to cAMP. However, during whole-cell

translocation, myosin II-motor-based contractility contributes

to the speed of rear retraction [37–39, 41, 42]—as we find for

both guidance cues.

Conversely, most mlcE null cells failed to polarize and

migrate away from 8CPT within the standard 300-s analysis

period (Figure 4J): only 6.2% (5/81) did so, which is 5-fold

less than wild-type. More cells polarized if left for around

30 min longer in a turning assay. These cells could turn but

use a different mechanism than wild-type cells. Retraction of

the rear did not break symmetry (Figure 4L) unlike wild-type

(Figures 1, 2, 3, 4B, and 4D and Movies S2 and S4), but

instead, the cells either polarized by protrusion at the front

(Figure 4L) or performed U-turns, indicating steering from the

front (Figure 4K). Neither mode was typically observed with

wild-type in response to 8CPT (Figures 1F and 2G and Tables

S1 and S2). These results strongly suggest that myosin II mo-

tor activity is important for symmetry breaking when it starts

with rear retraction in these cells.

By studying Dictyostelium cells at sufficient temporal reso-

lution, we find explicit evidence that migration toward cAMP

fits the widely reported model [11–15] where actin filament as-

sembly at the front drives protrusion, breaking symmetry and
Figure 4. Myosin II Plays a Distinctly Different Role in Cells Respondin

(A and B) Overlay of paired images from a time-lapse of an AX2 cell (gray) sho

translocation in cAMP attractant (A) but during the symmetry break in 8CPT repelle

the start of polarization and within brackets to the start of whole movement. In 8CP

visible in Figure 3B). In cAMP, myosin II bias begins at 21 ± 7 s of whole-cell translo

(F) and (G).

(C andD) Kymograph (distance-time plot) of a live AX2 cell showing thatmyosin II d

the cell rear 2–4 s before its initial retraction in 8CPT (D). Shown are paired kymog

relative to the break in cell symmetry (0 s).

(E) Comparing timing of visible myosin II bias relative to the symmetry break for th

rear zones in each cue in 14 (cAMP) or 15 (8CPT) cells from 9–10 experiments p

(F and G) Relative myosin II fluorescence intensity within the cell rear during its in

before polarization (‘‘unpol’’) for the same cell and comparing the rear to the fron

individual ratios; n = 19–38 paired rear-rear or paired rear-front zones in 14–15

measurement of fluorescence within the rear (bracket 1) and front (bracket 2). B

measurements (see STAR Methods).

(H) Comparison of the timing of myosin II and actin filament polarization during

n = 20–24 paired rear-front zones in 13–14 cells per guidance cue).

(I and J) Images from a time-lapse of mlcE null cells showing that cells initiate po

when comparing the first �5 min of the guidance cue. Time refers to total elapse

(K) Comparison of AX2 ormlcE null cells that U-turn in response to cAMP or 8CPT i

total types of turns (U-, reverse, and lateral) for that condition. AX2 data are from

(L) Type of cell margin displacement that starts reverse and lateral turns in cAMP

Bar (A): 10 mm (A and B) and 30 mm (I and J); Bar (C): 3 mm (C and D).

See also Figure S2.

1002 Current Biology 28, 995–1004, March 19, 2018
initiating migration. On the contrary, to move away from 8CPT,

cells break symmetry by contracting at the rear using myosin

II motor activity. In both cases, cell symmetry is broken by a

local cytoskeletal response to the guidance cue, but this

starts at opposite ends of the cell with distinct cytoskeleton

protein activities (depicted in the Figures S2D and S2E). An

important outcome of our work is that breaking symmetry

from the cell rear does not fit any of the popular theoretical

models for amoeboid movement or steering in response to

the guidance cue [47].

Myosin II contractility is sufficient for some types of cell migra-

tion [48], and both constitutive locomotion [27, 49] and the

motility of cell fragments [26] start with rear retraction, hinting

that cell symmetry may regularly be broken by contraction of

the rear of the cell. We predict [16] that different types of repel-

lents or other conditions that repel cells will turn out to employ

this rear-driven mode of cell polarization. Clearly, this needs

direct testing for different repellents, conditions, and cells.

Overall, our work reveals that both ‘‘front-driven’’ and

‘‘rear-driven’’ modes of starting migration in response to guid-

ance cues must now be considered. We envisage that these

two distinct mechanisms provide an effective means for cells

to navigate complex tissue environments and that their recogni-

tion will lead to the discovery of important, and as yet unrealized,

pathways for the early steps of cell guidance.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

cyclic-AMP (cAMP) Sigma-Aldrich A9501; CAS: 60-92-4

8-(p-Chlorophenylthio)-cyclic-AMP (8CPT) BIOLOG C 010; CAS: 93882-12-3

Experimental Models: Organisms/Strains

Dictyostelium discoideum axenic strain

AX2 (Kay laboratory strain)

Laboratory of Rob Kay dictyBase: DBS0235521

Dictyostelium discoideum myosin II

essential light chain null strain (mlcE null)

Dicty Stock Center dictyBase: DBS0236566

Recombinant DNA

GFP-ABP-120 plasmid [50] dictyBase plasmid ID: 472; pDXA-GFPABD120

mRFPmars-ABP-120 plasmid [51] dictyBase plasmid ID: 472; mars-ABD120

GFP-myosin II (mhcA) [52] N/A

Software and Algorithms

MetaMorph https://www.moleculardevices.com/

systems/metamorph-research-imaging/

metamorph-microscopy-automation-

and-image-analysis-software

RRID: SCR_002368
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Louise P.

Cramer (l.cramer@ucl.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Dictyostelium Strains
Dictyostelium discoideum axenic strain AX2 (Kay laboratory strain; DBS0235521 at http://dictybase.org) used as ‘wild-type’, and

myosin II essential light chain null strain (mlcE�, DBS0236566) were used in the experiments. For F-actin visualization, Dictyostelium

cells were transformed with an F-actin reporter construct consisting of GFP [50] or RFP [51] fused to the F-actin binding domain of

Dictyostelium protein ABP-120, and for myosin II visualization transformed with the myosin II (mhcA) – GFP fusion construct [52].

METHOD DETAILS

Cell Growth and Developmental Stage
Dictyostelium cells were grown on tissue culture plates in axenic medium (HL5 plus glucose medium (Formedium), 200 mg/ml

Dihydrostreptomycin) at 22�C [19, 23, 53]. For all experiments, developmental stage was carefully controlled: cells were developed

to an aggregation-competent state by first harvesting vegetative amoebae from axenic media and washing them three times in KK2

buffer (16.5mMKH2PO4, 3.9mMK2HPO4, 2mMMgSO4, 0.1mMCaCl2, pH 6.1). After washing, cells were counted and resuspended

in KK2 buffer at 2 3 107 cells/ml. They were then shaken at 180 rpm at 22�C for one hour (for starvation) before pulsing with 90 nM

cAMP (cyclic-AMP, final concentration) every six minutes for 4.5 hours, using a peristaltic pump (WatsonMarlow 505D). This ensures

that the cAMP receptor and other genes are expressed properly.

Treatment of Live Cells with Cell Guidance Cue
All experiments were donewith a gradient of cell guidance cue. Aggregation-competent cells were washed in KK2 buffer prior to stim-

ulation. Cells were then stimulated directly on the microscope with guidance cue flowing from a glass micropipette (Femptotips II,

Eppendorf, Germany) [19, 23] filled with either 2 mM solution (in KK2) of chemo-attractant cAMP (cyclic-AMP, Sigma Aldrich), or,

as previously reported with, 10 mM [22] of chemo-repellent 8-(p-Chlorophenylthio)-cyclic-AMP (BioLog), referred to here as

8CPT. The glass micropipette was positioned using a micromanipulator (Eppendorf 5171, Germany). Diffusion from the micropipette

created a steep gradient of guidance cues. In these cells it is thought (and known for cAMP) that 8CPT binds the cAMP receptor,

cAR1 [22]. In these cells, cAMP works through G-alpha2; and as far as it has been investigated, 8CPT - through G-alpha1 [22].
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Breaking of Cell Symmetry Assay
We used live cells in all experiments. This assay reports the break in cell symmetry (also defined as initiation of cell migration) and

consequent migration afterward. Aggregation competent Dictyostelium cells were prepared (as above), washed in KK2 buffer and

settled at room temperature in KK2 buffer on two-well Lab-Tek chambered microscopy coverslips (Nalge Nunc International,

USA). After settling, cells on coverslips were pre-cooled on ice for 10 minutes, which causes cessation of any random cell migration

and induces loss of cell polarity [23]. Then immediately, cells were moved to a microscope at room temperature for filming and

stimulated with cell guidance cue (as described above) at room temperature. Once on the microscope, encounter with cell guidance

cue flowing from the micropipette as cells warmed-up induced the breaking of cell symmetry and initiation of cell migration either

toward cAMP or away from 8CPT, which could be captured on film [23]. Cells were filmed typically for 200 s-300 s and occasionally

for 100-200 s from the point of the first stable encounter with cell guidance cue. Practically, the time it took to reach the first stable

encounter with guidance cue is the time it took to move cells to the microscope, find the micropipette in the field of view and start

filming; this was typically 1-2 minutes, but occasionally was 5-7 minutes. Images were collected every 1 s with dual fluorescence and

DIC time-lapse microscopy using a Zeiss 710 laser scanning confocal microscope and a 63 3 oil-immersion objective (Zeiss,

Germany).

Cell Behaviors Observed in the Assay

In this assay, for both cell guidance cues, we observed: cells that polarized, cells that did not polarize, cells that were already

migrating at the start of filming, and rarely, cells that moved the wrong way. We fully characterized and quantified these behaviors

in 87-141 individual cells (Table S1). We presumed that cells that were already polarized and migrating at the start of filming was due

to fast cell polarization during the time it took to find cells and capture the first image.We excluded the rare cells thatmoved thewrong

way from subsequent analyses. We were able to readily distinguish all these cell behaviors in careful analysis of movies. Thus, we

readily identified polarizing cells that we captured in movies, and only analyzed those polarizing cells for our study (Table S1).

Limitations and Controls in the Assay

In order to answer the questions posed in the study we had to trade sufficient temporal resolution (typically 200-300 frames of movie

at 1 frame/s) with shorter total length of movie (200-300 s = 3.3- 5 minutes). Once cells initiated cell migration and whole cell trans-

location, they continued migrating for the remaining period of the movie, sometimes with re-polarization and re-migration in the

expected direction. We illustrate examples of continued monitoring of the same cells through initiation of cell migration and sub-

sequent whole cell translocation in (Figures 1J and 1K compared with Figures S1G and S1H; and by inspection of images in Figures

1C–1E, 1H, 1I, 2C–2E, 3A, 3B, 4A, 4B, 4I, and S1D, and S1E). To compare behavior of AX2 cells withmlcE null cells we kept the period

of filming the same and asked what proportion of cells initiated cell migration and subsequent whole cell translocation in that time

period.

Cell Turning Assay in Live Cells
This assay reports cells induced to turn in a population of live migrating cells. We used cell turning as an alternate method to study

breaking of symmetry. Aggregation competent Dictyostelium cells were prepared for filming as for the initiation of cell migration

assay, except cells were not pre-cooled on ice, and to induce a cell turn the micropipette containing cAMP or 8CPT was moved

to a new position that was filmed [19]. Images were collected every 1 s with DIC time-lapse microscopy using a Zeiss 710 laser

scanning confocal microscope and a 633 oil-immersion objective (Zeiss, Germany). We fully characterized and quantified the assay

in (Table S2). Developmental stage was controlled the same for each cell turning assay. Further, for each cell that we tested, prior

to moving the pipette, we ensured that that cell was fully polarized and undergoing whole cell translocation. Within this window of

development and also dependent on how long each individual cell had been previously migrating for, migrating cell shape ranged

from rounder to longer. We used cell turning to identify the temporal order of new cell front and new cell rear formation, therefore

we only studied those cells that did turn and that had distinguishable cell boundaries and sequence of events (fully reported in

Table S2).

QUANTIFICATION AND STATISTICAL ANALYSIS

Source Films used for Cell Analyses
In most films in AX2 cells, cells were transformed with both actin and myosin II markers and dual fluorescence and DIC images

acquired. Not all individual cells in all movies visibly expressed both markers, due to variable levels of expression cell to cell. For

each experimental condition, we pooled polarizing cells (identified as described, above) for subsequent analysis. Then we separately

analyzed cell margin displacement (Figures 1, 2, 3, and 4), actin filament localization (Figure 3), myosin II localization (Figure 4) and

myosin II intensity (Figure 4). In further separate analysis, we analyzed actin and myosin II dynamics within the same cell in cells that

sufficiently expressed both markers (Figure 4H).

Tracking Front and Rear Cell Margin Displacement
Live cells were analyzed one-by-one, manually in eachmovie, frame-by-frame inMetaMorph (Universal Imaging) [27, 46, 54, 55]. This

is very labor intensive, but yields very accurate information on precise position of the cell margin, as required for the study. For all

experiments, events were captured in live cells at a temporal resolution of 1 s that is significantly faster than the cell polarizes (roughly

30-60 s) thereby allowing the start of cell front protrusion to be readily distinguished from the start of cell rear retraction. We identified
e2 Current Biology 28, 995–1004.e1–e3, March 19, 2018



which end of the cell was the front and rear, and which of these margins displaced first, readily and unambiguously by tracking

through the movie frame-by-frame and marking position of the cell margin with time, typically at 200%–300% magnification on

screen.

Initial rear retraction manifest as either: retraction of a discrete, larger, cellular zone (for example, zone on the bulk cell body

Figure 1H); or coordinate, or near coordinate retraction of several, smaller discrete zones, located near each other (e.g., delocalized

protrusions in Figure 2D, black arrows); or both (e.g., Movie S4) in which case all discrete zones were tracked. Initial front protrusion

tended to protrude from one contiguous (e.g., Movie S1) or near contiguous (e.g., Movie S2) cellular zone.

Morphometrics Displayed in the Figures
For manuscript space considerations, frames from the movies in the figures are illustrated at 1-4 s time intervals depending on either

cell speed or duration of the delay between front and rear margin displacement. Distance-time graphs were plotted every 3 s as anal-

ysis showed that the delay between the front and rear was significantly longer than 3 s for these individual cells (Figures 1J and 1K)

and an average 4–5 fold longer in the cell population (Figure 1G). Line scans of fluorescence intensity were acquired at a line width of 5

pixels from raw images at the indicated times in the figures and raw data displayed (Figures 3F and 3G). Kymographs were acquired

at a line width of 3 pixels, every 1 s from raw time-lapse sequences (Figures 3C and 4C and 4D) and then scaled for illustration (below).

Scaling of Images in the Figures
All frames showing F-actin or myosin II fluorescence in cells and all frames that comprise kymographs, were scaled the same for any

given individual cell and the same for all pixels in the image to allow fair comparison of fluorescence with spatial location and time for

that cell. DIC images of cells were scaled to sufficiently increase the contrast so that the cell margins were clearly identifiable in re-

produced images. For overlay images, scaled imageswere used for the source images.When comparing attractant and repellent, the

parameters of the overlay were the same. Illustrated images in figures accurately reflect the original, raw images.

Fluorescence Intensity Measurements
Average integrated fluorescence intensity per unit area was measured in rectangles of approximate 3-6 mm2 and within paired rear

and front zones in the same cell from raw fluorescence images. Figure 4A indicates the location of cell rear (bracket 1) and cell front

(bracket 2) zones for measurements. The very tip of the cell front (�1 mm; bracket 3) was excluded frommeasurements as myosin II is

typically excluded from this zone in these and many other cells during whole cell translocation. The ratio of fluorescence intensities

between relevant zones (recorded in Figures 4F and 4G) was then determined for each individual cell as that cell transited through key

steps: non-polarized; initial displacement of the rear margin; whole cell translocation. The cell population average of individual ratios

was then determined for each of these steps.

Location of Statistical Details
Details of all cell behaviors are located in Tables S1 and S2. Standard error of the mean and number of experiments are provided in

the figures or results. n represents cells or cell margin zones as specified in the figure legends.
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