296 research outputs found

    Sizing of integrated solar photovoltaic and electrolysis systems for clean hydrogen production

    Get PDF
    This work presents a method to design an optimised system that combines electrolysers and solar photovoltaic panels for sustainable hydrogen production. Given the daily and seasonal variations of the electricity output vs. a stable hydrogen demand, power exchange to/from the electric grid and hydrogen storage systems are considered. The aim is to determine the optimal size of the PV field, the electrolyser, and the storage, for a given hydrogen demand, by minimising the cost of the hydrogen produced

    Maxillary sinus elevation in conjunction with transnasal endoscopic treatment of rhino-sinusal pathoses: preliminary results on 10 consecutively treated patients

    Get PDF
    A one-step surgical procedure is presented, including maxillary sinus floor elevation in association with functional endoscopic sinus surgery to remove rhino-sinusal malformations or pathoses that might contraindicate sinus floor elevation. Over a 2-year period, 10 patients requiring a sinus floor augmentation procedure to restore the missing dentition with endosseous implants, but presenting with local and reversible rhinologic contraindications to the augmentation procedure were consecutively treated with a surgical approach that included simultaneously functional endoscopic sinus surgery and a sinus floor elevation procedure through an intra-oral approach. Then 4-6 months after this procedure, oral implants were inserted and after a further waiting period, ranging from 3 to 6 months, patients were restored with prostheses and followed for 1 to 3 years after the completion of prosthetic restoration. In all 10 patients, complete recovery of para-nasal sinuses function was demonstrated and occurred in all cases within one month. All cases showed good integration and consolidation of the graft material used for maxillary sinus floor augmentation. None of the implants placed were lost during the follow-up period after completion of prosthetic loading. In conclusion, despite the limits of this study (which included only 10 patients), the combination of maxillary sinus augmentation procedures and functional endoscopic sinus surgery, to treat local contraindications to sinus augmentation has proven to be both effective and safe and has allowed the patient to avoid a second surgical procedure and a longer waiting period before final prosthetic rehabilitation. No sinusal complications related to sinus floor augmentation were encountered and the survival rate of implants placed in the augmented areas was consistent with those reported in cases of sinus floor augmentation performed in patients presenting with a healthy rhino-sinusal system

    Mycofactocin Is Associated with Ethanol Metabolism in Mycobacteria

    No full text
    Tuberculosis is caused by Mycobacterium tuberculosis, and the increasing emergence of multidrug-resistant strains renders current treatment options ineffective. Although new antimycobacterial drugs are urgently required, their successful development often relies on complete understanding of the metabolic pathways—e.g., cholesterol assimilation—that are critical for persistence and for pathogenesis of M. tuberculosis. In this regard, mycofactocin (MFT) function appears to be important because its biosynthesis genes are predicted to be essential for M. tuberculosisin vitro growth in cholesterol. In determining the metabolic basis of this genetic requirement, our results unexpectedly revealed the essential function of MFT in ethanol metabolism. The metabolic dysfunction thereof was found to affect the mycobacterial growth in cholesterol which is solubilized by ethanol. This knowledge is fundamental in recognizing the bona fide function of MFT, which likely resembles the pyrroloquinoline quinone-dependent ethanol oxidation in acetic acid bacteria exploited for industrial production of vinegar.Mycofactocin (MFT) belongs to the class of ribosomally synthesized and posttranslationally modified peptides conserved in many Actinobacteria. Mycobacterium tuberculosis assimilates cholesterol during chronic infection, and its in vitro growth in the presence of cholesterol requires most of the MFT biosynthesis genes (mftA, mftB, mftC, mftD, mftE, and mftF), although the reasons for this requirement remain unclear. To identify the function of MFT, we characterized MFT biosynthesis mutants constructed in Mycobacterium smegmatis, M. marinum, and M. tuberculosis. We found that the growth deficit of mft deletion mutants in medium containing cholesterol—a phenotypic basis for gene essentiality prediction—depends on ethanol, a solvent used to solubilize cholesterol. Furthermore, functionality of MFT was strictly required for growth of free-living mycobacteria in ethanol and other primary alcohols. Among other genes encoding predicted MFT-associated dehydrogenases, MSMEG_6242 was indispensable for M. smegmatis ethanol assimilation, suggesting that it is a candidate catalytic interactor with MFT. Despite being a poor growth substrate, ethanol treatment resulted in a reductive cellular state with NADH accumulation in M. tuberculosis. During ethanol treatment, mftC mutant expressed the transcriptional signatures that are characteristic of respirational dysfunction and a redox-imbalanced cellular state. Counterintuitively, there were no differences in cellular bioenergetics and redox parameters in mftC mutant cells treated with ethanol. Therefore, further understanding of the function of MFT in ethanol metabolism is required to identify the cause of growth retardation of MFT mutants in cholesterol. Nevertheless, our results establish the physiological role of MFT and also provide new insights into the specific functions of MFT homologs in other actinobacterial systems

    Static properties of the dissipative random quantum Ising ferromagnetic chain

    Full text link
    We study the zero temperature static properties of dissipative ensembles of quantum Ising spins arranged on periodic one dimensional finite clusters and on an infinite chain. The spins interact ferro-magnetically with nearest-neighbour pure and random couplings. They are subject to a transverse field and coupled to an Ohmic bath of quantum harmonic oscillators. We analyze the coupled system using Monte Carlo simulations of the classical two-dimensional counterpart model. The coupling to the bath enhances the extent of the ordered phase, as found in mean-field spin-glasses. In the case of finite clusters we show that a generalization of the Caldeira-Leggett localization transition exists. In the case of the infinite random chain we study the effect of dissipation on the transition and the Griffiths phase.Comment: 21 pages, 10 figure

    Effects of dissipation on disordered quantum spin models

    Full text link
    We study the effects of the coupling to an Ohmic quantum reservoir on the static and dynamical properties of a family of disordered SU(2) spin models in a transverse magnetic field using a method of direct spin summation. The tendency to form a glassy phase increases with the strength of the coupling of the system to the environment. We study the influence of the environment on the features of the phase diagram of the various models as well as the stability of the possible phases.Comment: 24 pages, 8 fig

    Masseteric-facial nerve neurorrhaphy: results of a case series

    Get PDF
    OBJECTIVE: Facial palsy is a well-known functional and esthetic problem that bothers most patients and affects their social relationships. When the time between the onset of paralysis and patient presentation is less than 18 months and the proximal stump of the injured facial nerve is not available, another nerve must be anastomosed to the facial nerve to reactivate its function. The masseteric nerve has recently gained popularity over the classic hypoglossus nerve as a new motor source because of its lower associated morbidity rate and the relative ease with which the patient can activate it. The aim of this work was to evaluate the effectiveness of masseteric-facial nerve neurorrhaphy for early facial reanimation. METHODS: Thirty-four consecutive patients (21 females, 13 males) with early unilateral facial paralysis underwent masseteric-facial nerve neurorrhaphy in which an interpositional nerve graft of the great auricular or sural nerve was placed. The time between the onset of paralysis and surgery ranged from 2 to 18 months (mean 13.3 months). Electromyography revealed mimetic muscle fibrillations in all the patients. Before surgery, all patients had House-Brackmann Grade VI facial nerve dysfunction. Twelve months after the onset of postoperative facial nerve reactivation, each patient underwent a clinical examination using the modified House-Brackmann grading scale as a guide. RESULTS: Overall, 91.2% of the patients experienced facial nerve function reactivation. Facial recovery began within 2-12 months (mean 6.3 months) with the restoration of facial symmetry at rest. According to the modified House-Brackmann grading scale, 5.9% of the patients had Grade I function, 61.8% Grade II, 20.6% Grade III, 2.9% Grade V, and 8.8% Grade VI. The morbidity rate was low; none of the patients could feel the loss of masseteric nerve function. There were only a few complications, including 1 case of postoperative bleeding (2.9%) and 2 local infections (5.9%), and a few patients complained about partial loss of sensitivity of the earlobe or a small area of the ankle and foot, depending on whether great auricular or sural nerves were harvested. CONCLUSIONS: The surgical technique described here seems to be efficient for the early treatment of facial paralysis and results in very little morbidity

    Orbital medial wall fractures: Purely endoscopic endonasal repair with polyethylene implants

    Get PDF
    Our technique couples the stronger support granted by non-resorbable materials and the minimal invasiveness of the endoscopic approach without the need for long-term nasal packing

    Activation measurement of the 3He(alpha,gamma)7Be cross section at low energy

    Full text link
    The nuclear physics input from the 3He(alpha,gamma)7Be cross section is a major uncertainty in the fluxes of 7Be and 8B neutrinos from the Sun predicted by solar models and in the 7Li abundance obtained in big-bang nucleosynthesis calculations. The present work reports on a new precision experiment using the activation technique at energies directly relevant to big-bang nucleosynthesis. Previously such low energies had been reached experimentally only by the prompt-gamma technique and with inferior precision. Using a windowless gas target, high beam intensity and low background gamma-counting facilities, the 3He(alpha,gamma)7Be cross section has been determined at 127, 148 and 169 keV center-of-mass energy with a total uncertainty of 4%. The sources of systematic uncertainty are discussed in detail. The present data can be used in big-bang nucleosynthesis calculations and to constrain the extrapolation of the 3He(alpha,gamma)7Be astrophysical S-factor to solar energies
    • …
    corecore