1,729 research outputs found

    Mobile radio interferometric geodetic systems

    Get PDF
    Operation of the Astronomical Radio Interferometric Earth Surveying (ARIES) in a proof of concept mode is discussed. Accuracy demonstrations over a short baseline, a 180 km baseline, and a 380 km baseline are documented. Use of ARIES in the Sea Slope Experiment of the National Geodetic Survey to study the apparent differences between oceanographic and geodetic leveling determinations of the sea surface along the Pacific Coast is described. Intergration of the NAVSTAR Global Positioning System and a concept called SERIES (Satellite Emission Radio Interferometric Earth Surveying) is briefly reviewed

    Elevated alpha-synuclein caused by SNCA gene triplication impairs neuronal differentiation and maturation in Parkinson's patient-derived induced pluripotent stem cells

    Get PDF
    We have assessed the impact of α-synuclein overexpression on the differentiation potential and phenotypic signatures of two neural-committed induced pluripotent stem cell lines derived from a Parkinson´s disease patient with a triplication of the human SNCA genomic locus. In parallel, comparative studies were performed on two control lines derived from healthy individuals and lines generated from the patient iPS-derived neuroprogenitor lines infected with a lentivirus incorporating a small hairpin RNA to knock down the SNCA mRNA. The SNCA triplication lines exhibited a reduced capacity to differentiate into dopaminergic or GABAergic neurons and decreased neurite outgrowth and lower neuronal activity compared with control cultures. This delayed maturation phenotype was confirmed by gene expression profiling, which revealed a significant reduction in mRNA for genes implicated in neuronal differentiation such as delta-like homolog 1 (DLK1), gamma-aminobutyric acid type B receptor subunit 2 (GABABR2), nuclear receptor related 1 protein (NURR1), G-protein-regulated inward-rectifier potassium channel 2 (GIRK-2) and tyrosine hydroxylase (TH). The differentiated patient cells also demonstrated increased autophagic flux when stressed with chloroquine. We conclude that a two-fold overexpression of α-synuclein caused by a triplication of the SNCA gene is sufficient to impair the differentiation of neuronal progenitor cells, a finding with implications for adult neurogenesis and Parkinson´s disease progression, particularly in the context of bioenergetic dysfunction.Fil: Oliveira, L. M. A.. Max-Planck-Institut für biophysikalische Chemie; AlemaniaFil: Falomir Lockhart, Lisandro Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata ; Argentina. Max-Planck-Institut für biophysikalische Chemie; AlemaniaFil: Botelho, M. G.. Max-Planck-Institut für biophysikalische Chemie; Alemania. Universidade Federal do Rio de Janeiro; BrasilFil: Lin, K. H.. Max-Planck-Institut für biophysikalische Chemie; AlemaniaFil: Wales, P.. Universität Göttingen; AlemaniaFil: Koch, J. C.. Universität Göttingen; AlemaniaFil: Gerhardt, Elizabeth. Universität Göttingen; AlemaniaFil: Taschenberger, H.. Max-Planck-Institut für biophysikalische Chemie; AlemaniaFil: Outeiro, T. F.. Universität Göttingen; AlemaniaFil: Lingor, P.. Universität Göttingen; AlemaniaFil: Schüele, B.. The Parkinson’s Institute; Estados UnidosFil: Arndt Jovin, D. J.. Max-Planck-Institut für biophysikalische Chemie; AlemaniaFil: Jovin, T. M.. Max-Planck-Institut für biophysikalische Chemie; Alemani

    Preserving entanglement under decoherence and sandwiching all separable states

    Get PDF
    Every entangled state can be perturbed, for instance by decoherence, and stay entangled. For a large class of pure entangled states, we show how large the perturbation can be. Our class includes all pure bipartite and all maximally entangled states. For an entangled state, E, the constucted neighborhood of entangled states is the region outside two parallel hyperplanes, which sandwich the set of all separable states. The states for which these neighborhoods are largest are the maximally entangled ones. As the number of particles, or the dimensions of the Hilbert spaces for two of the particles increases, the distance between two of the hyperplanes which sandwich the separable states goes to zero. It is easy to decide if a state Q is in the neighborhood of entangled states we construct for an entangled state E. One merely has to check if the trace of EQ is greater than a constant which depends upon E and which we determine.Comment: Corrected first author's e-mail address. All the rest remains unchange

    Electrostatic Patch Effect in Cylindrical Geometry. I. Potential and Energy between Slightly Non-Coaxial Cylinders

    Full text link
    We study the effect of any uneven voltage distribution on two close cylindrical conductors with parallel axes that are slightly shifted in the radial and by any length in the axial direction. The investigation is especially motivated by certain precision measurements, such as the Satellite Test of the Equivalence Principle (STEP). By energy conservation, the force can be found as the energy gradient in the vector of the shift, which requires determining potential distribution and energy in the gap. The boundary value problem for the potential is solved, and energy is thus found to the second order in the small transverse shift, and to lowest order in the gap to cylinder radius ratio. The energy consists of three parts: the usual capacitor part due to the uniform potential difference, the one coming from the interaction between the voltage patches and the uniform voltage difference, and the energy of patch interaction, entirely independent of the uniform voltage. Patch effect forces and torques in the cylindrical configuration are derived and analyzed in the next two parts of this work.Comment: 26 pages, 1 Figure. Submitted to Classical and Quantum Gravit

    Multiple and Fast: The Accretion of Ordinary Chondrite Parent Bodies

    Get PDF
    Although petrologic, chemical and isotopic studies of ordinary chondrites and meteorites in general have largely helped establish a chronology of the earliest events of planetesimal formation and their evolution, there are several questions that cannot be resolved via laboratory measurements and/or experiments only. Here we propose rationale for several new constraints on the formation and evolution of ordinary chondrite parent bodies (and by extension most planetesimals) from newly available spectral measurements and mineralogical analysis of main belt S-type asteroids (83 objects) and unequilibrated ordinary chondrite meteorites (53 samples). Based on the latter, we suggest spectral data may be used to distinguish whether an ordinary chondrite was formed near the surface or in the interior of its parent body. If these constraints are correct, the suggested implications include that: i) large groups of compositionally similar asteroids are a natural outcome of planetesimal formation and, consequently, meteorites within a given class can originate from multiple parent bodies; ii) the surfaces of large (up to ~200km) S-type main-belt asteroids expose mostly the interiors of the primordial bodies, a likely consequence of impacts by small asteroids (D<10km) in the early solar system (Ciesla et al. 2013); iii) the duration of accretion of the H chondrite parent bodies was likely short (instantaneous or in less then ~10^5 yr but certainly not as long as 1 Myr); iv) LL-like bodies formed closer to the Sun than H-like bodies, a possible consequence of radial mixing and size sorting of chondrules in the protoplanetary disk prior to accretion.Comment: Accepted for publication in Ap

    Sequence alignment, mutual information, and dissimilarity measures for constructing phylogenies

    Get PDF
    Existing sequence alignment algorithms use heuristic scoring schemes which cannot be used as objective distance metrics. Therefore one relies on measures like the p- or log-det distances, or makes explicit, and often simplistic, assumptions about sequence evolution. Information theory provides an alternative, in the form of mutual information (MI) which is, in principle, an objective and model independent similarity measure. MI can be estimated by concatenating and zipping sequences, yielding thereby the "normalized compression distance". So far this has produced promising results, but with uncontrolled errors. We describe a simple approach to get robust estimates of MI from global pairwise alignments. Using standard alignment algorithms, this gives for animal mitochondrial DNA estimates that are strikingly close to estimates obtained from the alignment free methods mentioned above. Our main result uses algorithmic (Kolmogorov) information theory, but we show that similar results can also be obtained from Shannon theory. Due to the fact that it is not additive, normalized compression distance is not an optimal metric for phylogenetics, but we propose a simple modification that overcomes the issue of additivity. We test several versions of our MI based distance measures on a large number of randomly chosen quartets and demonstrate that they all perform better than traditional measures like the Kimura or log-det (resp. paralinear) distances. Even a simplified version based on single letter Shannon entropies, which can be easily incorporated in existing software packages, gave superior results throughout the entire animal kingdom. But we see the main virtue of our approach in a more general way. For example, it can also help to judge the relative merits of different alignment algorithms, by estimating the significance of specific alignments.Comment: 19 pages + 16 pages of supplementary materia

    Geodetic measurements with a mobile VLBI system

    Get PDF
    The Project ARIES 9 meter transportable antenna was used as one element of very long baseline interferometer (VLBI) to begin monitoring locations of six sites in California relative to large diameter fixed antennas at the NASA Deep Space Network, Goldstone, California, and at the Caltech Owens Valley Radio Observatory, Big Pine, California. An accuracy of about 6 cm in the horizontal components was demonstrated by comparison with measurements of the National Geodetic Survey. The root of mean square scatter of the lengths of the baselines between any pair of antennas was about 3 cm except for the Goldstone-JPL (Pasadena) baseline. In the period August 1974 to August 1977 the length of this baseline increased by 15 + or - 5 cm as JPL moved westward relative to Goldstone at the rate of 6 + or - 2 cm/year. The baseline lengths were unaffected by the uncertainties of UT1, polar motion, and tropospheric water vapor, which are the limitations to present three dimensional vector accuracies
    • …
    corecore