10 research outputs found

    Modelling habitat conversion in miombo woodlands : Insights from Tanzania

    Get PDF
    <p>Understanding the drivers of natural habitat conversion is a major challenge, yet predicting where future losses may occur is crucial to preventing them. Here, we used Bayesian analysis to model spatio-temporal patterns of land-use/cover change in two protected areas designations and unclassified land in Tanzania using time-series satellite images. We further investigated the costs and benefits of preserving fragmenting habitat joining the two ecosystems over the next two decades. We reveal that habitat conversion is driven by human population, existing land-use systems and the road network. We also reveal the probability of habitat conversion to be higher in the least protected area category. Preservation of habitat linking the two ecosystems saving 1640 ha of land from conversion could store between 21,320 and 49,200 t of carbon in the next 20 years, with the potential for generating between US$ 85,280 and 131,200 assuming a REDD+ project is implemented.</p

    Assessing habitat suitability: the case of black rhino in the Ngorongoro Conservation Area

    Get PDF
    Efforts to identify suitable habitat for wildlife conservation are crucial for safeguarding biodiversity, facilitating management, and promoting sustainable coexistence between wildlife and communities. Our study focuses on identifying potential black rhino (Diceros bicornis) habitat within the Ngorongoro Conservation Area (NCA), Tanzania, across wet and dry seasons. To achieve this, we used remote sensing data with and without field data. We employed a comprehensive approach integrating Sentinel-2 and PlanetScope images, vegetation indices, and human activity data. We employed machine learning recursive feature elimination (RFE) and random forest (RF) algorithms to identify the most relevant features that contribute to habitat suitability prediction. Approximately 36% of the NCA is suitable for black rhinos throughout the year; however, there are seasonal shifts in habitat suitability. Anthropogenic factors increase land degradation and limit habitat suitability, but this depends on the season. This study found a higher influence of human-related factors during the wet season, with suitable habitat covering 53.6% of the NCA. In the dry season, browse availability decreases and rhinos are forced to become less selective of the areas where they move to fulfil their nutritional requirements, with anthropogenic pressures becoming less important. Furthermore, our study identified specific areas within the NCA that consistently offer suitable habitat across wet and dry seasons. These areas, situated between Olmoti and the Crater, exhibit minimal disturbance from human activities, presenting favourable conditions for rhinos. Although the Oldupai Gorge only has small suitable patches, it used to sustain a large population of rhinos in the 1960s. Land cover changes seem to have decreased the suitability of the Gorge. This study highlights the importance of combining field data with remotely sensed data. Remote sensing-based assessments rely on the importance of vegetation covers as a proxy for habitat and often overlook crucial field variables such as shelter or breeding locations. Overall, our study sheds light on the imperative of identifying suitable habitat for black rhinos within the NCA and underscores the urgency of intensified conservation efforts. Our findings underscore the need for adaptive conservation strategies to reverse land degradation and safeguard black rhino populations in this dynamic multiple land-use landscape as environmental and anthropogenic pressures evolve

    Density responses of lesser-studied carnivores to habitat and management strategies in southern Tanzania's Ruaha-Rungwa landscape

    Get PDF
    Compared to emblematic large carnivores, most species of the order Carnivora receive little conservation attention despite increasing anthropogenic pressure and poor understanding of their status across much of their range. We employed systematic camera trapping and spatially explicit capture-recapture modelling to estimate variation in population density of serval, striped hyaena and aardwolf across the mixed-use Ruaha-Rungwa landscape in southern Tanzania. We selected three sites representative of different habitat types, management strategies, and levels of anthropogenic pressure: Ruaha National Park’s core tourist area, dominated by Acacia-Commiphora bushlands and thickets; the Park’s miombo woodland; and the neighbouring community-run MBOMIPA Wildlife Management Area, also covered in Acacia-Commiphora. The Park’s miombo woodlands supported a higher serval density (5.56 [Standard Error = ±2.45] individuals per 100 km2) than either the core tourist area (3.45 [±1.04] individuals per 100 km2) or the Wildlife Management Area (2.08 [±0.74] individuals per 100 km2). Taken together, precipitation, the abundance of apex predators, and the level of anthropogenic pressure likely drive such variation. Striped hyaena were detected only in the Wildlife Management Area and at low density (1.36 [±0.50] individuals per 100 km2), potentially due to the location of the surveyed sites at the edge of the species’ global range, high densities of sympatric competitors, and anthropogenic edge effects. Finally, aardwolf were captured in both the Park’s core tourist area and the Wildlife Management Area, with a higher density in the Wildlife Management Area (13.25 [±2.48] versus 9.19 [±1.66] individuals per 100 km2), possibly as a result of lower intraguild predation and late fire outbreaks in the area surveyed. By shedding light on three understudied African carnivore species, this study highlights the importance of miombo woodland conservation and community-managed conservation, as well as the value of by-catch camera trap data to improve ecological knowledge of lesser-studied carnivores

    New record of strawberry leopard ( Panthera pardus ) in Selous Game Reserve, Tanzania

    Get PDF
    Strawberry or red leopards are a rare colour morph of leopard (Panthera pardus) characterised by spot markings that are red or brown instead of black, thought to be a result of a mutation in the tyrosinase‐related protein (TYRP1) gene. We report the first record of this phenotype on the African continent outside of South Africa, from Selous Game Reserve in southern Tanzania. One female leopard with strawberry colouration was documented out of 373 individual leopards (0.3%) identified through camera trap surveys conducted from 2020 to 2022 over a combined area of more than 4600 km2 in the Nyerere‐Selous landscape

    Tracking animal movements using biomarkers in tail hairs: a novel approach for animal geolocating from sulfur isoscapes.

    Get PDF
    This research article published by Movement Ecology, 2020Background Current animal tracking studies are most often based on the application of external geolocators such as GPS and radio transmitters. While these technologies provide detailed movement data, they are costly to acquire and maintain, which often restricts sample sizes. Furthermore, deploying external geolocators requires physically capturing and recapturing of animals, which poses an additional welfare concern. Natural biomarkers provide an alternative, non-invasive approach for addressing a range of geolocation questions and can, because of relatively low cost, be collected from many individuals thereby broadening the scope for population-wide inference. Methods We developed a low-cost, minimally invasive method for distinguishing between local versus non-local movements of cattle using sulfur isotope ratios (ή34S) in cattle tail hair collected in the Greater Serengeti Ecosystem, Tanzania. Results We used a Generalized Additive Model to generate a predicted ή34S isoscape across the study area. This isoscape was constructed using spatial smoothers and underpinned by the positive relationship between ή34S values and lithology. We then established a strong relationship between ή34S from recent sections of cattle tail hair and the ή34S from grasses sampled in the immediate vicinity of an individual’s location, suggesting ή34S in the hair reflects the ή34S in the environment. By combining uncertainty in estimation of the isoscape, with predictions of tail hair ή34S given an animal’s position in the isoscape we estimated the anisotropic distribution of travel distances across the Serengeti ecosystem sufficient to detect movement using sulfur stable isotopes. Conclusions While the focus of our study was on cattle, this approach can be modified to understand movements in other mobile organisms where the sulfur isoscape is sufficiently heterogeneous relative to the spatial scale of animal movements and where tracking with traditional methods is difficult

    Wildlife movements and landscape connectivity in the Tarangire ecosystem

    No full text
    A fundamental condition for maintaining viable populations of wildlife is to ensure that animals can access resources. In landscapes where the boundaries of protected areas encompass only a fraction of annual home ranges, animal movement is often curtailed by human activities, often with negative population consequences. In the Tarangire Ecosystem (TE), wildlife generally aggregates in three main protected areas during the dry season (Tarangire and Lake Manyara National Parks, and Manyara Ranch Conservancy) and disperses to several other areas during the wet season. Connectivity between and within seasonal ranges in the ecosystem has generally become more restricted over time, though the apparent effects of these changes have been species-specific. Historical accounts of wildlife movement suggest that animals once moved over much larger areas than they do currently. In this chapter, we review historical information on wildlife movement and distributions in the TE and synthesize data on population genetic structure and individual movements from studies of elephants, giraffes, lions and wildebeests conducted over the past 25 years. Given the continued expansion of agricultural and urban areas, there is a need to coordinate efforts across land management agencies and local governments to ensure that wildlife can continue to move across the landscape

    Efficacy of land use designation in protecting habitat in the miombo woodlands: Insights from Tanzania

    Get PDF
    This research article was published in the bioRxiv preprint server for biology, 2017Loss of natural landscapes surrounding major conservation areas compromise their future and threaten long-term conservation. We evaluate the effectiveness of fully and lesser protected areas within Katavi-Rukwa and Ruaha-Rungwa ecosystems in south-western Tanzania to protecting natural landscapes within their boundaries over the past four decades. Using a time series of Landsat satellite imageries of September 1972, July 1990 and September 2015, we assess the extent to which natural habitat has been lost within and around these areas mainly through anthropogenic activities. We also test the viability of the remaining natural habitat to provide connectivity between the two ecosystems. Our analysis reveals that while fully protected areas remained intact over the past four decades, lesser protected areas lost a combined total area of about 5,984 km2 during that period which is about 17.5% of habitat available in 1972. We also find that about 3,380 km2 of natural habitat is still available for connectivity between the two ecosystems through Piti East and Rungwa South Open Areas. We recommend relevant authorities to establish conservation friendly village land use plans in all villages surrounding and between the two ecosystems to ensure long-term conservation of these ecosystems

    Mapping out a future for ungulate migrations

    No full text
    Migration of ungulates (hooved mammals) is a fundamental ecological process that promotes abundant herds, whose effects cascade up and down terrestrial food webs. Migratory ungulates provide the prey base that maintains large carnivore and scavenger populations and underpins terrestrial biodiversity (fig. S1). When ungulates move in large aggregations, their hooves, feces, and urine create conditions that facilitate distinct biotic communities. The migrations of ungulates have sustained humans for thousands of years, forming tight cultural links among Indigenous people and local communities. Yet ungulate migrations are disappearing at an alarming rate (1). Efforts by wildlife managers and conservationists are thwarted by a singular challenge: Most ungulate migrations have never been mapped in sufficient detail to guide effective conservation. Without a strategic and collaborative effort, many of the world's great migrations will continue to be truncated, severed, or lost in the coming decades. Fortunately, a combination of animal tracking datasets, historical records, and local and Indigenous knowledge can form the basis for a global atlas of migrations, designed to support conservation action and policy at local, national, and international levels

    Mapping out a future for ungulate migrations : Limited mapping of migrations hampers conservation

    No full text

    Mapping out a future for ungulate migrations : Limited mapping of migrations hampers conservation

    No full text
    corecore