55 research outputs found

    Effectiveness of the repair of unstabilised rammed earth with injection of mud grouts

    Get PDF
    The presence of cracks debilitates the structural performance of rammed earth. Grout injection is a repair solution put forward recently, where compatibility issues demand using mud grouts. Little is known on this topic, whereby an experimental program on the mechanical effectiveness of grout injection for repairing cracks in rammed earth was performed. Specimens tested under bending and diagonal compression were retested after repair with injection of mud grouts. Mud grouts incorporating the original soil of the rammed earth are shown to perform better and their injection achieves satisfactory shear strength recovery, but is less effective in recovering initial shear stiffness.This work was partly financed by FEDER funds through the Competitivity Factors Operational Programme - COMPETE and by national funds through FCT – Foundation for Science and Technology within the scope of projects POCI-01-0145-FEDER-007633 and POCI-01-0145-FEDER-016737 (PTDC/ECM-EST/2777/2014). The first author would also like to acknowledge FCT for the Post-doc grant SFRH/BPD/97082/2013

    Assessment of the effectiveness of the embedded through-section technique for the shear strengthening of RC beams

    Get PDF
    Embedded Through-Section (ETS) technique is a relatively recent shear strengthening strategy for reinforced concrete (RC) beams, and consists on opening holes across the depth of the beam’s cross section, with the desired inclinations, where bars are introduced and are bonded to the concrete substrate with adhesive materials. To assess the effectiveness of this technique, a comprehensive experimental program composed of 14 RC beams was carried out, and the obtained results confirm the feasibility of the ETS method and revealed that: (i) inclined ETS strengthening bars were more effective than vertical ETS bars, and the shear capacity of the beams has increased with the decrease of the spacing between bars; (ii) brittle shear failure was converted in ductile flexural failure, and (iii) the contribution of the ETS strengthening bars for the beam shear resistance was limited by the concrete crushing or due to the yielding of the longitudinal reinforcement. The applicability of the ACI 318 (2008) and Eurocode 2 (2004) standard specifications for shear resistance was examined and a good agreement between the experimental and analytical results was obtained.The study reported in this article is part of the research project 'DURCOST', PTDC/ECM/105700/2008, supported by FCT. The authors wish to acknowledge the support provided by the 'Casais', Secil (Unibetao, Braga) and Sika Portugal Companies. The first author acknowledges the National Council for Scientific and Technological Development (CNPq), Brazil, for financial support for scholarship (GDE 200953/2007-9)

    Impact of repairs on embodied carbon dioxide expenditure for a reinforced-concrete quay

    Get PDF
    Studies on structural repair using life-cycle analysis are still lacking the environmental impact of repair actions. This research work shows that the choice of the best repair option for reinforced-concrete structures is a function of long-term environmental impact, considering the longevity of maintenance intervention and embodied carbon dioxide expenditure. The purpose of this work was to assess the lifetime of a quay superstructure exposed to an aggressive marine microenvironment by using a probabilistic performance-based approach and then to select the best repair option for its reinforced-concrete structures. The comparison is made for reinforced-concrete service life using three different concrete types and two different corrosion inhibitors. Longevity and embodied carbon dioxide were predicted for the expected number of repair actions per 100 years. It is shown that concretes may have a higher impact at the outset, although they result in a much lower impact across the service life of the structure

    Experimental investigation on the bond behavior of a compatible TRM-based solution for rammed earth heritage

    Get PDF
    Despite the current awareness of the high seismic risk of earthen structures, little has been done so far to develop proper strengthening solutions for the rammed earth heritage. Based on the effectiveness of TRM for masonry buildings, the strengthening of rammed earth walls with externally bonded fibers using earth-based mortar is being proposed as a compatible solution. In this context, the investigation of bond behavior was conducted by means of direct tensile tests, pull-out tests and single lap-shear tests. The specimens were prepared using earth-based mortars and two different types of meshes (glass and nylon) while considering different-bonded lengths. The direct tensile tests on TRM coupons showed the high capacity of the nylon mesh in transferring stresses after cracking of the mortar. The pull-out tests highlighted that in the case of glass fiber mesh, the bond was granted by friction, while the mechanical anchorage promoted by the transversal yarns granted the bond of the nylon mesh. Finally, the single lap-shear tests showed that the adopted earth-based mortar seems to limit the performance of the strengthening.This work was supported by the Fundacao para a Ciencia e a Tecnologia [PTDC/ECM-EST/2777/2014, SFRH/BD/131006/2017, SFRH/BPD/97082/2013]

    Influence of adding phase change materials on the physical and mechanical properties of cement mortars

    Get PDF
    During the last years several studies of construction materials with incorporation of encapsulated phase change material (PCM) have been published. However, the utilization of non-encapsulated PCM is one of the main gaps. The main objective of this work was the study of physical and mechanical properties of cement mortars with incorporation of non-encapsulated PCM. It was possible to conclude that the utilization of non-encapsulated phase change materials can be seen as a good and more economical solution for the energy efficiency of the buildings, without prejudice of the properties.The authors acknowledge the Portuguese Foundation for Science and Technology (FCT) for the financial support of PhD scholarship SFRH/BD/95611/2013

    Boulder deposition during major tsunami events

    Get PDF
    A remarkable accumulation of marine boulders located above the present spring tide level has occurred in two coastal lowlands of the Algarve (Portugal). The size-interval of the particles studied here is seldom reported in the literature in association with extreme events of coastal inundation, thus making this study of relevance to many other coasts worldwide. The spreads of boulders extend several hundred meters inland and well beyond the present landward limit of storm activity. The marine origin of the boulders is demonstrated by well-developed macro-bioerosion sculpturing and in situ skeletal remains of endolithic shallow marine bivalves. The good state preservation of the fossils within the boulders indicates that abrasion duringtransport and redeposition was not significant. We envisage boulder deposition as having taken place during the Lisbon tsunami of ad 1755 through the simultaneous landward entrainment of coarse particles from nearshore followed by rapid shoreward suspended-dominated transport and non-graded redeposition that excluded significant sorting by weight or boulder dimensions. We use numerical hydrodynamic modeling of tsunami (and storm) waves to test the observational data on boulder dimensions (density, size, distribution) on the most likely processes of sediment deposition. This work demonstrates the effectiveness of the study of boulder deposits in tsunami reconstruction. Copyright (C) 2011 John Wiley & Sons, Ltd

    Wood

    No full text

    LNEC-GTI/OPENCoastS-Grids: Guadiana estuary grid - Portugal

    No full text
    This release contains the Guadiana estuary grid and metadata, provided by LNEC for OPENCoastS usag
    • …
    corecore