6,536 research outputs found

    Candida albicans repetitive elements display epigenetic diversity and plasticity

    Get PDF
    Transcriptionally silent heterochromatin is associated with repetitive DNA. It is poorly understood whether and how heterochromatin differs between different organisms and whether its structure can be remodelled in response to environmental signals. Here, we address this question by analysing the chromatin state associated with DNA repeats in the human fungal pathogen Candida albicans. Our analyses indicate that, contrary to model systems, each type of repetitive element is assembled into a distinct chromatin state. Classical Sir2-dependent hypoacetylated and hypomethylated chromatin is associated with the rDNA locus while telomeric regions are assembled into a weak heterochromatin that is only mildly hypoacetylated and hypomethylated. Major Repeat Sequences, a class of tandem repeats, are assembled into an intermediate chromatin state bearing features of both euchromatin and heterochromatin. Marker gene silencing assays and genome-wide RNA sequencing reveals that C. albicans heterochromatin represses expression of repeat-associated coding and non-coding RNAs. We find that telomeric heterochromatin is dynamic and remodelled upon an environmental change. Weak heterochromatin is associated with telomeres at 30?°C, while robust heterochromatin is assembled over these regions at 39?°C, a temperature mimicking moderate fever in the host. Thus in C. albicans, differential chromatin states controls gene expression and epigenetic plasticity is linked to adaptation

    Face-selective electrostatic control of hydrothermal zinc oxide nanowire synthesis

    Get PDF
    Rational control over the morphology and the functional properties of inorganic nanostructures has been a long-standing goal in the development of bottom-up device fabrication processes. We report that the geometry of hydrothermally grown zinc oxide nanowires can be tuned from platelets to needles, covering more than three orders of magnitude in aspect ratio (~0.1–100). We introduce a classical thermodynamics-based model to explain the underlying growth inhibition mechanism by means of the competitive and face-selective electrostatic adsorption of non-zinc complex ions at alkaline conditions. The performance of these nanowires rivals that of vapour-phase-grown nanostructures and their low-temperature synthesis (<60 °C) is favourable to the integration and in situ fabrication of complex and polymer-supported devices. We illustrate this capability by fabricating an all-inorganic light-emitting diode in a polymeric microfluidic manifold. Our findings indicate that electrostatic interactions in aqueous crystal growth may be systematically manipulated to synthesize nanostructures and devices with enhanced structural control.National Science Foundation (U.S.) (MIT Center for Bits and Atoms (NSF CCR0122419))Massachusetts Institute of Technology. Media LaboratoryKorea Foundation for Advanced StudiesSamsung Electronics Co. (research internship)Harvard University. Society of FellowsWallace H. Coulter Foundation (Early Career Award)Brain & Behavior Research Foundation (Young Investigator Award)National Science Foundation (U.S.)National Institutes of Health (U.S.) (Director’s New Innovator Award

    Benefits and risks of the hormetic effects of dietary isothiocyanates on cancer prevention

    Get PDF
    The isothiocyanate (ITC) sulforaphane (SFN) was shown at low levels (1-5 µM) to promote cell proliferation to 120-143% of the controls in a number of human cell lines, whilst at high levels (10-40 µM) it inhibited such cell proliferation. Similar dose responses were observed for cell migration, i.e. SFN at 2.5 µM increased cell migration in bladder cancer T24 cells to 128% whilst high levels inhibited cell migration. This hormetic action was also found in an angiogenesis assay where SFN at 2.5 µM promoted endothelial tube formation (118% of the control), whereas at 10-20 µM it caused significant inhibition. The precise mechanism by which SFN influences promotion of cell growth and migration is not known, but probably involves activation of autophagy since an autophagy inhibitor, 3-methyladenine, abolished the effect of SFN on cell migration. Moreover, low doses of SFN offered a protective effect against free-radical mediated cell death, an effect that was enhanced by co-treatment with selenium. These results suggest that SFN may either prevent or promote tumour cell growth depending on the dose and the nature of the target cells. In normal cells, the promotion of cell growth may be of benefit, but in transformed or cancer cells it may be an undesirable risk factor. In summary, ITCs have a biphasic effect on cell growth and migration. The benefits and risks of ITCs are not only determined by the doses, but are affected by interactions with Se and the measured endpoint

    Observation of a One-Dimensional Spin-Orbit Gap in a Quantum Wire

    Full text link
    Understanding the flow of spins in magnetic layered structures has enabled an increase in data storage density in hard drives over the past decade of more than two orders of magnitude1. Following this remarkable success, the field of 'spintronics' or spin-based electronics is moving beyond effects based on local spin polarisation and is turning its attention to spin-orbit interaction (SOI) effects, which hold promise for the production, detection and manipulation of spin currents, allowing coherent transmission of information within a device. While SOI-induced spin transport effects have been observed in two- and three-dimensional samples, these have been subtle and elusive, often detected only indirectly in electrical transport or else with more sophisticated techniques. Here we present the first observation of a predicted 'spin-orbit gap' in a one-dimensional sample, where counter-propagating spins, constituting a spin current, are accompanied by a clear signal in the easily-measured linear conductance of the system.Comment: 10 pages, 5 figures, supplementary informatio

    An elitist quantum-inspired evolutionary algorithm for the flexible job-shop scheduling problem

    Get PDF
    The flexible job shop scheduling problem (FJSP) is vital to manufacturers especially in today’s constantly changing environment. It is a strongly NP-hard problem and therefore metaheuristics or heuristics are usually pursued to solve it. Most of the existing metaheuristics and heuristics, however, have low efficiency in convergence speed. To overcome this drawback, this paper develops an elitist quantum-inspired evolutionary algorithm. The algorithm aims to minimise the maximum completion time (makespan). It performs a global search with the quantum-inspired evolutionary algorithm and a local search with a method that is inspired by the motion mechanism of the electrons around an atomic nucleus. Three novel algorithms are proposed and their effect on the whole search is discussed. The elitist strategy is adopted to prevent the optimal solution from being destroyed during the evolutionary process. The results show that the proposed algorithm outperforms the best-known algorithms for FJSPs on most of the FJSP benchmarks

    Predictors of linkage to care following community-based HIV counseling and testing in rural Kenya

    Get PDF
    Despite innovations in HIV counseling and testing (HCT), important gaps remain in understanding linkage to care. We followed a cohort diagnosed with HIV through a community-based HCT campaign that trained persons living with HIV/AIDS (PLHA) as navigators. Individual, interpersonal, and institutional predictors of linkage were assessed using survival analysis of self-reported time to enrollment. Of 483 persons consenting to follow-up, 305 (63.2%) enrolled in HIV care within 3 months. Proportions linking to care were similar across sexes, barring a sub-sample of men aged 18–25 years who were highly unlikely to enroll. Men were more likely to enroll if they had disclosed to their spouse, and women if they had disclosed to family. Women who anticipated violence or relationship breakup were less likely to link to care. Enrolment rates were significantly higher among participants receiving a PLHA visit, suggesting that a navigator approach may improve linkage from community-based HCT campaigns.Vestergaard Frandse

    Mapping interactions with the chaperone network reveals factors that protect against tau aggregation.

    Get PDF
    A network of molecular chaperones is known to bind proteins ('clients') and balance their folding, function and turnover. However, it is often unclear which chaperones are critical for selective recognition of individual clients. It is also not clear why these key chaperones might fail in protein-aggregation diseases. Here, we utilized human microtubule-associated protein tau (MAPT or tau) as a model client to survey interactions between ~30 purified chaperones and ~20 disease-associated tau variants (~600 combinations). From this large-scale analysis, we identified human DnaJA2 as an unexpected, but potent, inhibitor of tau aggregation. DnaJA2 levels were correlated with tau pathology in human brains, supporting the idea that it is an important regulator of tau homeostasis. Of note, we found that some disease-associated tau variants were relatively immune to interactions with chaperones, suggesting a model in which avoiding physical recognition by chaperone networks may contribute to disease

    Depression in medical students: insights from a longitudinal study

    Get PDF
    Background: Factors associated with depression of medical students are poorly understood. The purpose of this study is to determine the prevalence of depression in medical students, its change during the course, if depression persists for affected students, what are the factors associated with depression and how these factors change over time. Methods: A prospective, longitudinal observational study was conducted at the Medical School of the University of Minho, Portugal, between academic years 2009-2010 to 2012-2013. We included students who maintained their participation by annually completing a questionnaire including Beck Depression Inventory (BDI). Anxiety and burnout were assessed using the State Trait Anxiety Inventory and Maslach Burnout Inventory. Surveys on socio-demographic variables were applied to evaluate potential predictors, personal and academic characteristics and perceived difficulties. ANOVA with multiple comparisons were used to compare means of BDI score. The medical students were organized into subgroups by K-means cluster analyses. ANOVA mixed-design repeated measurement was performed to assess a possible interaction between variables associated with depression. Results: The response rate was 84, 92, 88 and 81% for academic years 2009-2010, 2010-2011,2011-2012 and 2012/2013, respectively. Two hundred thirty-eight medical students were evaluated longitudinally. For depression the prevalence ranged from 21.5 to 12.7% (academic years 2009/2010 and 2012/2013). BDI scores decreased during medical school. 19.7% of students recorded sustained high BDI over time. These students had high levels of trait-anxiety and choose medicine for anticipated income and prestige, reported more relationship issues, cynicism, and decreased satisfaction with social activities. Students with high BDI scores at initial evaluation with low levels of trait-anxiety and a primary interest in medicine as a career tended to improve their mood and reported reduced burnout, low perceived learning problems and increased satisfaction with social activities at last evaluation. No difference was detected between men and women in the median BDI score over time. Conclusions: Our findings suggest that personal factors (anxiety traits, medicine choice factors, relationship patterns and academic burnout) are relevant for persistence of high levels of BDI during medical training. Medical schools need to identity students who experience depression and support then, as early as possible, particularly when depression has been present over time.info:eu-repo/semantics/publishedVersio

    The nuclear receptors of Biomphalaria glabrata and Lottia gigantea: Implications for developing new model organisms

    Get PDF
    © 2015 Kaur et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedNuclear receptors (NRs) are transcription regulators involved in an array of diverse physiological functions including key roles in endocrine and metabolic function. The aim of this study was to identify nuclear receptors in the fully sequenced genome of the gastropod snail, Biomphalaria glabrata, intermediate host for Schistosoma mansoni and compare these to known vertebrate NRs, with a view to assessing the snail's potential as a invertebrate model organism for endocrine function, both as a prospective new test organism and to elucidate the fundamental genetic and mechanistic causes of disease. For comparative purposes, the genome of a second gastropod, the owl limpet, Lottia gigantea was also investigated for nuclear receptors. Thirty-nine and thirty-three putative NRs were identified from the B. glabrata and L. gigantea genomes respectively, based on the presence of a conserved DNA-binding domain and/or ligand-binding domain. Nuclear receptor transcript expression was confirmed and sequences were subjected to a comparative phylogenetic analysis, which demonstrated that these molluscs have representatives of all the major NR subfamilies (1-6). Many of the identified NRs are conserved between vertebrates and invertebrates, however differences exist, most notably, the absence of receptors of Group 3C, which includes some of the vertebrate endocrine hormone targets. The mollusc genomes also contain NR homologues that are present in insects and nematodes but not in vertebrates, such as Group 1J (HR48/DAF12/HR96). The identification of many shared receptors between humans and molluscs indicates the potential for molluscs as model organisms; however the absence of several steroid hormone receptors indicates snail endocrine systems are fundamentally different.The National Centre for the Replacement, Refinement and Reduction of Animals in Research, Grant Ref:G0900802 to CSJ, LRN, SJ & EJR [www.nc3rs.org.uk]
    corecore