62 research outputs found

    Segregation of myoblast fusion and muscle-specific gene expression by distinct ligand-dependent inactivation of GSK-3β

    Get PDF
    Myogenic differentiation involves myoblast fusion and induction of muscle-specific gene expression, which are both stimulated by pharmacological (LiCl), genetic, or IGF-I-mediated GSK-3β inactivation. To assess whether stimulation of myogenic differentiation is common to ligand-mediated GSK-3β inactivation, myoblast fusion and muscle-specific gene expression were investigated in response to Wnt-3a. Moreover, crosstalk between IGF-I/GSK-3β/NFATc3 and Wnt/GSK-3β/β-catenin signaling was assessed. While both Wnt-3a and LiCl promoted myoblast fusion, muscle-specific gene expression was increased by LiCl, but not by Wnt-3a or β-catenin over-expression. Furthermore, LiCl and IGF-I, but not Wnt-3a, increased NFATc3 transcriptional activity. In contrast, β-catenin-dependent transcriptional activity was increased by Wnt-3a and LiCl, but not IGF-I. These results for the first time reveal a segregated regulation of myoblast fusion and muscle-specific gene expression following stimulation of myogenic differentiation in response to distinct ligand-specific signaling routes of GSK-3β inactivation

    Pemetrexed Induced Thymidylate Synthase Inhibition in Non-Small Cell Lung Cancer Patients: A Pilot Study with 3 '-Deoxy-3 '-[F-18]fluorothymidine Positron Emission Tomography

    Get PDF
    OBJECTIVES: Pemetrexed is a thymidylate synthase (TS) inhibitor and is effective in non-small cell lung cancer (NSCLC). 3'-deoxy-3'-[¹⁸F]fluorothymidine (¹⁸F-FLT), a proliferation marker, could potentially identify tumor specific TS-inhibition. The aim of this study was to investigate the effect of pemetrexed-induced TS-inhibition on ¹⁸F-FLT uptake 4 hours after pemetrexed administration in metastatic NSCLC patients. METHODS: Fourteen NSCLC patients underwent dynamic ¹⁸F-FLT positron emission tomography (PET) scans at baseline and 4 hours after the first dose of pemetrexed. Volumes of interest were defined with a 41%, 50% and 70% threshold of the maximum pixel. Kinetic analysis and simplified measures were performed. At one, two, four and six hours after pemetrexed, plasma deoxyuridine was measured as systemic indicator of TS-inhibition. Tumor response measured with response evaluation criteria in solid tumors (RECIST), time to progression (TTP) and overall survival (OS) were determined. RESULTS: Eleven patients had evaluable ¹⁸F-FLT PET scans at baseline and 4 hours after pemetrexed. Two patients had increased ¹⁸F-FLT uptake of 35% and 31% after pemetrexed, whereas two other patients had decreased uptake of 31%. In the remaining seven patients ¹⁸F-FLT uptake did not change beyond test-retest borders. In all patients deoxyuridine levels raised after administration of pemetrexed, implicating pemetrexed-induced TS-inhibition. ¹⁸F-FLT uptake in bone marrow was significantly increased 4 hours after pemetrexed administration. Six weeks after the start of treatment 5 patients had partial response, 4 stable disease and 2 progressive disease. Median TTP was 4.2 months (range 3.0-7.4 months); median OS was 13.0 months (range 5.1-30.8 months). Changes in ¹⁸F-FLT uptake were not predictive for tumor response, TTP or OS. CONCLUSIONS: Measuring TS-inhibition in a clinical setting 4 hours after pemetrexed revealed a non-systematic change in ¹⁸F-FLT uptake within the tumor. No significant association with tumor response, TTP or OS was observed

    Reproducibility of quantitative F-18-3'-deoxy-3'-fluorothymidine measurements using positron emission tomography

    Get PDF
    Positron emission tomography (PET) using F-18-3'-deoxy-3'-fluorothymidine ([F-18]FLT) allows noninvasive monitoring of tumour proliferation. For serial imaging in individual patients, good reproducibility is essential. The purpose of the present study was to evaluate the reproducibility of quantitative [F-18]FLT measurements. Nine patients with non-small-cell lung cancer (NSCLC) and six with head-and-neck cancer (HNC) underwent [F-18]FLT PET twice within 7 days prior to therapy. The maximum pixel value (SUVmax) and a threshold defined volume (SUV41%) were defined for all delineated lesions. The plasma to tumour transfer constant (K-i) was estimated using both Patlak graphical analysis and nonlinear regression (NLR). NLR was also used to estimate k(3), which, at least in theory, selectively reflects thymidine kinase 1 activity. The level of agreement between test and retest values was assessed using the intraclass correlation coefficient (ICC) and Bland-Altman analysis. All primary tumours and > 90% of clinically suspected locoregional metastases could be delineated. In total, 24 lesions were defined. NLR-derived K-i, Patlak-derived K-i, SUV41% and SUVmax showed excellent reproducibility with ICCs of 0.92, 0.95, 0.98 and 0.93, and SDs of 16%, 12%, 7% and 11%, respectively. Reproducibility was poor for k(3) with an ICC of 0.43 and SD of 38%. Quantitative [F-18]FLT measurements are reproducible in both NSCLC and HNC patients. When monitoring response in individual patients, changes of more than 15% in SUV41%, 20-25% in SUVmax and Patlak-derived K-i, and 32% in NLR3k-derived K-i are likely to represent treatment effect

    Widespread white matter microstructural differences in schizophrenia across 4322 individuals:Results from the ENIGMA Schizophrenia DTI Working Group

    Get PDF
    The regional distribution of white matter (WM) abnormalities in schizophrenia remains poorly understood, and reported disease effects on the brain vary widely between studies. In an effort to identify commonalities across studies, we perform what we believe is the first ever large-scale coordinated study of WM microstructural differences in schizophrenia. Our analysis consisted of 2359 healthy controls and 1963 schizophrenia patients from 29 independent international studies; we harmonized the processing and statistical analyses of diffusion tensor imaging (DTI) data across sites and meta-analyzed effects across studies. Significant reductions in fractional anisotropy (FA) in schizophrenia patients were widespread, and detected in 20 of 25 regions of interest within a WM skeleton representing all major WM fasciculi. Effect sizes varied by region, peaking at (d=0.42) for the entire WM skeleton, driven more by peripheral areas as opposed to the core WM where regions of interest were defined. The anterior corona radiata (d=0.40) and corpus callosum (d=0.39), specifically its body (d=0.39) and genu (d=0.37), showed greatest effects. Significant decreases, to lesser degrees, were observed in almost all regions analyzed. Larger effect sizes were observed for FA than diffusivity measures; significantly higher mean and radial diffusivity was observed for schizophrenia patients compared with controls. No significant effects of age at onset of schizophrenia or medication dosage were detected. As the largest coordinated analysis of WM differences in a psychiatric disorder to date, the present study provides a robust profile of widespread WM abnormalities in schizophrenia patients worldwide. Interactive three-dimensional visualization of the results is available at www.enigma-viewer.org.Molecular Psychiatry advance online publication, 17 October 2017; doi:10.1038/mp.2017.170

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Mortality of Inherited Arrhythmia Syndromes

    No full text
    Background-For most arrhythmia syndromes, the risk of sudden cardiac death for asymptomatic mutation carriers is ill defined. Data on the natural history of these diseases, therefore, are essential. The family tree mortality ratio method offers the unique possibility to study the natural history at a time when the disease was not known and patients received no treatment. Methods and Results-In 6 inherited arrhythmia syndromes caused by specific mutations, we analyzed all-cause mortality with the family tree mortality ratio method (main outcome measure, standardized mortality ratio [SMR]). In long-QT syndrome (LQTS) type 1, severely increased mortality risk during all years of childhood was observed (1-19 years), in particular during the first 10 years of life (SMR, 2.9; 95% CI, 1.5-5.1). In LQTS type 2, we observed increasing SMRs starting from age 15 years, whi Conclusions-We identified age ranges during which the mortality risk manifests in an unselected and untreated population, which can guide screening in these families. (Circ Cardiovasc Genet. 2012;5:183-189.

    Mortality of Inherited Arrhythmia Syndromes Insight Into Their Natural History

    No full text
    Background-For most arrhythmia syndromes, the risk of sudden cardiac death for asymptomatic mutation carriers is ill defined. Data on the natural history of these diseases, therefore, are essential. The family tree mortality ratio method offers the unique possibility to study the natural history at a time when the disease was not known and patients received no treatment. Methods and Results-In 6 inherited arrhythmia syndromes caused by specific mutations, we analyzed all-cause mortality with the family tree mortality ratio method (main outcome measure, standardized mortality ratio [SMR]). In long-QT syndrome (LQTS) type 1, severely increased mortality risk during all years of childhood was observed (1-19 years), in particular during the first 10 years of life (SMR, 2.9; 95% CI, 1.5-5.1). In LQTS type 2, we observed increasing SMRs starting from age 15 years, whi Conclusions-We identified age ranges during which the mortality risk manifests in an unselected and untreated population, which can guide screening in these families. (Circ Cardiovasc Genet. 2012;5:183-189.

    Plakophilin-2 mutations are the major determinant of familial arrhythmogenic right ventricular dysplasia/cardiomyopathy

    No full text
    Background-Mutations in the plakophilin-2 gene (PKP2) have been found in patients with arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVC). Hence, genetic screening can potentially be a valuable tool in the diagnostic workup of patients with ARVC. Methods and Results-To establish the prevalence and character of PKP2 mutations and to study potential differences in the associated phenotype, we evaluated 96 index patients, including 56 who fulfilled the published task force criteria. In addition, 114 family members from 34 of these 56 ARVC index patients were phenotyped. In 24 of these 56 ARVC patients (43%), 14 different (11 novel) PKP2 mutations were identified. Four different mutations were found more than once; haplotype analyses revealed identical haplotypes in the different mutation carriers, suggesting founder mutations. No specific genotype-phenotype correlations could be identified, except that negative T waves in V-2 and V-3 occurred more often in PKP2 mutation carriers (P Conclusions-PKP2 mutations can be identified in nearly half of the Dutch patients fulfilling the ARVC criteria. In familial ARVC, even the vast majority (70%) is caused by PKP2 mutations. However, nonfamilial ARVC is not related to PKP2. The high yield of mutational analysis in familial ARVC is unique in inherited cardiomyopathies
    corecore