862 research outputs found
DHODH modulates transcriptional elongation in the neural crest and melanoma
Melanoma is a tumour of transformed melanocytes, which are originally derived from the embryonic neural crest. It is unknown to what extent the programs that regulate neural crest development interact with mutations in the BRAF oncogene, which is the most commonly mutated gene in human melanoma1. We have used zebrafish embryos to identify the initiating transcriptional events that occur on activation of human BRAF(V600E) (which encodes an amino acid substitution mutant of BRAF) in the neural crest lineage. Zebrafish embryos that are transgenic for mitfa:BRAF(V600E) and lack p53 (also known as tp53) have a gene signature that is enriched for markers of multipotent neural crest cells, and neural crest progenitors from these embryos fail to terminally differentiate. To determine whether these early transcriptional events are important for melanoma pathogenesis, we performed a chemical genetic screen to identify small-molecule suppressors of the neural crest lineage, which were then tested for their effects on melanoma. One class of compound, inhibitors of dihydroorotate dehydrogenase (DHODH), for example leflunomide, led to an almost complete abrogation of neural crest development in zebrafish and to a reduction in the self-renewal of mammalian neural crest stem cells. Leflunomide exerts these effects by inhibiting the transcriptional elongation of genes that are required for neural crest development and melanoma growth. When used alone or in combination with a specific inhibitor of the BRAF(V600E) oncogene, DHODH inhibition led to a marked decrease in melanoma growth both in vitro and in mouse xenograft studies. Taken together, these studies highlight developmental pathways in neural crest cells that have a direct bearing on melanoma formation
Evaluation of antithrombotic use and COVID-19 outcomes in a nationwide atrial fibrillation cohort
OBJECTIVE: To evaluate antithrombotic (AT) use in individuals with atrial fibrillation (AF) and at high risk of stroke (CHA2DS2-VASc score ≥2) and investigate whether pre-existing AT use may improve COVID-19 outcomes. METHODS: Individuals with AF and CHA2DS2-VASc score ≥2 on 1 January 2020 were identified using electronic health records for 56 million people in England and were followed up until 1 May 2021. Factors associated with pre-existing AT use were analysed using logistic regression. Differences in COVID-19-related hospitalisation and death were analysed using logistic and Cox regression in individuals with pre-existing AT use versus no AT use, anticoagulants (AC) versus antiplatelets (AP), and direct oral anticoagulants (DOACs) versus warfarin. RESULTS: From 972 971 individuals with AF (age 79 (±9.3), female 46.2%) and CHA2DS2-VASc score ≥2, 88.0% (n=856 336) had pre-existing AT use, 3.8% (n=37 418) had a COVID-19 hospitalisation and 2.2% (n=21 116) died, followed up to 1 May 2021. Factors associated with no AT use included comorbidities that may contraindicate AT use (liver disease and history of falls) and demographics (socioeconomic status and ethnicity). Pre-existing AT use was associated with lower odds of death (OR=0.92, 95% CI 0.87 to 0.96), but higher odds of hospitalisation (OR=1.20, 95% CI 1.15 to 1.26). AC versus AP was associated with lower odds of death (OR=0.93, 95% CI 0.87 to 0.98) and higher hospitalisation (OR=1.17, 95% CI 1.11 to 1.24). For DOACs versus warfarin, lower odds were observed for hospitalisation (OR=0.86, 95% CI 0.82 to 0.89) but not for death (OR=1.00, 95% CI 0.95 to 1.05). CONCLUSIONS: Pre-existing AT use may be associated with lower odds of COVID-19 death and, while not evidence of causality, provides further incentive to improve AT coverage for eligible individuals with AF
Recommended from our members
Improving early childhood care and development, HIV testing, treatment and support, and nutrition in Mokhotlong, Lesotho: study protocol for a cluster randomized controlled trial
Background
Since 1990, the lives of 48 million children under the age of 5 have been saved because of increased investments in reducing child mortality. However, despite these unprecedented gains, more than 200 million children in low and middle income countries (LMIC) cannot meet their developmental potential due to poverty, poor health and nutrition, and lack of necessary stimulation and care. Lesotho has high levels of poverty, HIV and malnutrition, all of which affect child development outcomes. There is a unique opportunity to address these complex issues through the widespread network of informal preschools in rural villages in the country, which provide a setting for inclusive, integrated Early Childhood Care and Development (ECCD), HIV and nutrition interventions.
Methods
We are conducting a cluster randomised controlled trial in Mokhotlong district, Lesotho, to evaluate a newly developed community-based intervention programme to integrate HIV testing and treatment services, ECCD, and nutrition education for caregivers with children aged 1-5 years living in rural villages. Caregivers and their children are randomly assigned by village to intervention or control condition. We select, train, and supervise community health workers recruited to implement the intervention, which consists of nine group-based sessions with caregivers and children over 12 weeks (eight weekly sessions, and a ninth top up session one month later), followed by a locally hosted community health outreach day event. Group-based sessions focus on using early dialogic booksharing to promote cognitive development and caregiver-child interaction, health-related messages, including motivation for HIV-testing and treatment uptake for young children, and locally appropriate nutrition education. All children aged 1-5 years and their primary caregivers living in study villages are eligible for participation. Caregivers and their children will be interviewed and assessed at baseline, immediately after completion of the intervention, and 12 months post intervention.
Discussion
This study provides a unique opportunity to assess the potential of an integrated early childhood development intervention to prevent or mitigate developmental delays in children living in a context of extreme poverty and high HIV rates in rural Lesotho. This paper presents the intervention content and research protocol for the study
Sialic Acid Glycobiology Unveils Trypanosoma cruzi Trypomastigote Membrane Physiology.
Trypanosoma cruzi, the flagellate protozoan agent of Chagas disease or American trypanosomiasis, is unable to synthesize sialic acids de novo. Mucins and trans-sialidase (TS) are substrate and enzyme, respectively, of the glycobiological system that scavenges sialic acid from the host in a crucial interplay for T. cruzi life cycle. The acquisition of the sialyl residue allows the parasite to avoid lysis by serum factors and to interact with the host cell. A major drawback to studying the sialylation kinetics and turnover of the trypomastigote glycoconjugates is the difficulty to identify and follow the recently acquired sialyl residues. To tackle this issue, we followed an unnatural sugar approach as bioorthogonal chemical reporters, where the use of azidosialyl residues allowed identifying the acquired sugar. Advanced microscopy techniques, together with biochemical methods, were used to study the trypomastigote membrane from its glycobiological perspective. Main sialyl acceptors were identified as mucins by biochemical procedures and protein markers. Together with determining their shedding and turnover rates, we also report that several membrane proteins, including TS and its substrates, both glycosylphosphatidylinositol-anchored proteins, are separately distributed on parasite surface and contained in different and highly stable membrane microdomains. Notably, labeling for α(1,3)Galactosyl residues only partially colocalize with sialylated mucins, indicating that two species of glycosylated mucins do exist, which are segregated at the parasite surface. Moreover, sialylated mucins were included in lipid-raft-domains, whereas TS molecules are not. The location of the surface-anchored TS resulted too far off as to be capable to sialylate mucins, a role played by the shed TS instead. Phosphatidylinositol-phospholipase-C activity is actually not present in trypomastigotes. Therefore, shedding of TS occurs via microvesicles instead of as a fully soluble form
The Reform of Employee Compensation in China’s Industrial Enterprises
Although employee compensation reform in Chinese industrial sector has been discussed in the literature, the real changes in compensation system and pay practices have received insufficient attention and warrant further examination. This paper briefly reviews the pre- and post-reform compensation system, and reports the results of a survey of pay practices in the four major types of industrial enterprises in China. The research findings indicate that the type of enterprise ownership has little influence on general compensation practices, adoption of profit-sharing plans, and subsidy and allowance packages. In general, pay is linked more to individual performance and has become an important incentive to Chinese employees. However, differences are found across the enterprise types with regard to performance-related pay. Current pay practices are positively correlated to overall effectiveness of the enterprise
Expression of eEF1A2 is associated with clear cell histology in ovarian carcinomas: overexpression of the gene is not dependent on modifications at the EEF1A2 locus
The tissue-specific translation elongation factor eEF1A2 is a potential oncogene that is overexpressed in human ovarian cancer. eEF1A2 is highly similar (98%) to the near-ubiquitously expressed eEF1A1 (formerly known as EF1-α) making analysis with commercial antibodies difficult. We wanted to establish the expression pattern of eEF1A2 in ovarian cancer of defined histological subtypes at both the RNA and protein level, and to establish the mechanism for the overexpression of eEF1A2 in tumours. We show that while overexpression of eEF1A2 is seen at both the RNA and protein level in up to 75% of clear cell carcinomas, it occurs at a lower frequency in other histological subtypes. The copy number at the EEF1A2 locus does not correlate with expression level of the gene, no functional mutations were found, and the gene is unmethylated in both normal and tumour DNA, showing that overexpression is not dependent on genetic or epigenetic modifications at the EEF1A2 locus. We suggest that the cause of overexpression of eEF1A2 may be the inappropriate expression of a trans-acting factor. The oncogenicity of eEF1A2 may be related either to its role in protein synthesis or to potential non-canonical functions
Population genetics of cancer cell clones: possible implications of cancer stem cells
Abstract Background The population dynamics of the various clones of cancer cells existing within a tumour is complex and still poorly understood. Cancer cell clones can be conceptualized as sympatric asexual species, and as such, the application of theoretical population genetics as it pertains to asexual species may provide additional insights. Results The number of generations of tumour cells within a cancer has been estimated at a minimum of 40, but high cancer cell mortality rates suggest that the number of cell generations may actually be in the hundreds. Such a large number of generations would easily allow natural selection to drive clonal evolution assuming that selective advantages of individual clones are within the range reported for free-living animal species. Tumour cell clonal evolution could also be driven by variation in the intrinsic rates of increase of different clones or by genetic drift. In every scenario examined, the presence of cancer stem cells would require lower selection pressure or less variation in intrinsic rates of increase. Conclusions The presence of cancer stem cells may result in more rapid clonal evolution. Specific predictions from theoretical population genetics may lead to a greater understanding of this process.</p
High prevalence of trypanosomes in European badgers detected using ITS-PCR.
BACKGROUND: Wildlife can be important sources and reservoirs for pathogens. Trypanosome infections are common in many mammalian species, and are pathogenic in some. Molecular detection tools were used to measure trypanosome prevalence in a well-studied population of wild European badgers (Meles meles). FINDINGS: A nested ITS-PCR system, that targeted the ribosomal RNA gene locus, has been widely used to detect pathogenic human and animal trypanosomes in domestic animals in Africa and some wildlife hosts. Samples from a long-term DEFRA funded capture-mark-recapture study of wild badgers at Woodchester Park (Gloucestershire, SW England) were investigated for trypanosome prevalence. A total of 82 badger blood samples were examined by nested ITS-PCR. Twenty-nine of the samples were found to be positive for trypanosomes giving a prevalence of 35.4Â % (25.9Â % - 46.2Â %; 95Â % CI). Infection was not found to be linked to badger condition, sex or age. Analysis of DNA sequence data showed the badgers to be infected with Trypanosoma (Megatrypanum) pestanai and phylogenetic analysis showed the Woodchester badger trypanosomes and T. pestanai to cluster in the Megatrypanum clade. CONCLUSIONS: The results show that the ITS Nested PCR is an effective tool for diagnosing trypanosome infection in badgers and suggests that it could be widely used in wildlife species with unknown trypanosomes or mixed infections. The relatively high prevalence observed in these badgers raises the possibility that a significant proportion of UK badgers are naturally infected with trypanosomes
Prostacyclin reverses platelet stress fibre formation causing platelet aggregate instability
Prostacyclin (PGI2) modulates platelet activation to regulate haemostasis. Evidence has emerged to suggest that thrombi are dynamic structures with distinct areas of differing platelet activation. It was hypothesised that PGI2 could reverse platelet spreading by actin cytoskeletal modulation, leading to reduced capability of platelet aggregates to withstand a high shear environment. Our data demonstrates that post-flow of PGI2 over activated and spread platelets on fibrinogen, identified a significant reduction in platelet surface area under high shear. Exploration of the molecular mechanisms underpinning this effect revealed that PGI2 reversed stress fibre formation in adherent platelets, reduced platelet spreading, whilst simultaneously promoting actin nodule formation. The effects of PGI2 on stress fibres were mimicked by the adenylyl cyclase activator forskolin and prevented by inhibitors of protein kinase A (PKA). Stress fibre formation is a RhoA dependent process and we found that treatment of adherent platelets with PGI2 caused inhibitory phosphorylation of RhoA, reduced RhoA GTP-loading and reversal of myosin light chain phosphorylation. Phospho-RhoA was localised in actin nodules with PKA type II and a number of other phosphorylated PKA substrates. This study demonstrates that PGI2 can reverse key platelet functions after their initial activation and identifies a novel mechanism for controlling thrombosis
- …