6,223 research outputs found
Making a Third Space for Student Voices in Two Academic Libraries
When we think of voices in the library, we have tended to think of them as disruptive, something to control and manage for the sake of the total library environment. The stereotype of the shushing librarian pervades public perception, creating expectations about the kinds of spaces libraries want to create. Voices are not always disruptive, however. Indeed, developing an academic voice is one of the main challenges facing incoming university students, and libraries can play an important role in helping these students find their academic voices. Two initiatives at two different academic libraries are explored here: a Secrets Wall, where students are invited to write and share a secret during exam time while seeing, reading, commenting on the secrets of others; and a librarian and historian team-taught course called History on the Web, which brings together information literacy and the study of history in the digital age. This article examines both projects and considers how critical perspectives on voice and identity might guide our instructional practices, helping students to learn to write themselves into the university. Further, it describes how both the Secrets Wall and the History on the Web projects intentionally create a kind of “Third Space” designed specifically so students can enter it, negotiate with it, interrogate it, and eventually come to be part of it
Intrinsic ripples in graphene
The stability of two-dimensional (2D) layers and membranes is subject of a
long standing theoretical debate. According to the so called Mermin-Wagner
theorem, long wavelength fluctuations destroy the long-range order for 2D
crystals. Similarly, 2D membranes embedded in a 3D space have a tendency to be
crumpled. These dangerous fluctuations can, however, be suppressed by
anharmonic coupling between bending and stretching modes making that a
two-dimensional membrane can exist but should present strong height
fluctuations. The discovery of graphene, the first truly 2D crystal and the
recent experimental observation of ripples in freely hanging graphene makes
these issues especially important. Beside the academic interest, understanding
the mechanisms of stability of graphene is crucial for understanding electronic
transport in this material that is attracting so much interest for its unusual
Dirac spectrum and electronic properties. Here we address the nature of these
height fluctuations by means of straightforward atomistic Monte Carlo
simulations based on a very accurate many-body interatomic potential for
carbon. We find that ripples spontaneously appear due to thermal fluctuations
with a size distribution peaked around 70 \AA which is compatible with
experimental findings (50-100 \AA) but not with the current understanding of
stability of flexible membranes. This unexpected result seems to be due to the
multiplicity of chemical bonding in carbon.Comment: 14 pages, 6 figure
Steady-state modulation of voltage-gated K+ channels in rat arterial smooth muscle by cyclic AMP-dependent protein kinase and protein phosphatase 2B
Voltage-gated potassium channels (Kv) are important regulators of membrane potential in vascular smooth muscle cells, which is integral to controlling intracellular Ca2+ concentration and regulating vascular tone. Previous work indicates that Kv channels can be modulated by receptor-driven alterations of cyclic AMP-dependent protein kinase (PKA) activity. Here, we demonstrate that Kv channel activity is maintained by tonic activity of PKA. Whole-cell recording was used to assess the effect of manipulating PKA signalling on Kv and ATP-dependent K+ channels of rat mesenteric artery smooth muscle cells. Application of PKA inhibitors, KT5720 or H89, caused a significant inhibition of Kv currents. Tonic PKA-mediated activation of Kv appears maximal as application of isoprenaline (a β-adrenoceptor agonist) or dibutyryl-cAMP failed to enhance Kv currents. We also show that this modulation of Kv by PKA can be reversed by protein phosphatase 2B/calcineurin (PP2B). PKA-dependent inhibition of Kv by KT5720 can be abrogated by pre-treatment with the PP2B inhibitor cyclosporin A, or inclusion of a PP2B auto-inhibitory peptide in the pipette solution. Finally, we demonstrate that tonic PKA-mediated modulation of Kv requires intact caveolae. Pre-treatment of the cells with methyl-β-cyclodextrin to deplete cellular cholesterol, or adding caveolin-scaffolding domain peptide to the pipette solution to disrupt caveolae-dependent signalling each attenuated PKA-mediated modulation of the Kv current. These findings highlight a novel, caveolae-dependent, tonic modulatory role of PKA on Kv channels providing new insight into mechanisms and the potential for pharmacological manipulation of vascular tone
Incidence of rotavirus gastroenteritis by age in African, Asian and European children: Relevance for timing of rotavirus vaccination
© 2016 The Author(s). Published with license by Taylor & Francis. © GSK Biologicals SA.Variability in rotavirus gastroenteritis (RVGE) epidemiology can influence the optimal vaccination schedule. We evaluated regional trends in the age of RVGE episodes in low- to middle- versus high-income countries in three continents. We undertook a post-hoc analysis based on efficacy trials of a human rotavirus vaccine (HRV; Rotarix™, GSK Vaccines), in which 1348, 1641, and 5250 healthy infants received a placebo in Europe (NCT00140686), Africa (NCT00241644), and Asia (NCT00197210, NCT00329745). Incidence of any/severe RVGE by age at onset was evaluated by active surveillance over the first two years of life. Severity of RVGE episodes was assessed using the Vesikari-scale. The incidence of any RVGE in Africa was higher than in Europe during the first year of life (≤2.78% vs. ≤2.03% per month), but much lower during the second one (≤0.86% versus ≤2.00% per month). The incidence of severe RVGE in Africa was slightly lower than in Europe during the first year of life. Nevertheless, temporal profiles for the incidence of severe RVGE in Africa and Europe during the first (≤1.00% and ≤1.23% per month) and second (≤0.53% and ≤1.13% per month) years of life were similar to those of any RVGE. Any/severe RVGE incidences peaked at younger ages in Africa vs. Europe. In high-income Asian regions, severe RVGE incidence (≤0.31% per month) remained low during the study. The burden of any RVGE was higher earlier in life in children from low- to middle- compared with high-income countries. Differing rotavirus vaccine schedules are likely warranted to maximize protection in different settings
Dirac Gauginos, Negative Supertraces and Gauge Mediation
In an attempt to maximize General Gauge Mediated parameter space, I propose
simple models in which gauginos and scalars are generated from disconnected
mechanisms. In my models Dirac gauginos are generated through the supersoft
mechanism, while independent R-symmetric scalar masses are generated through
operators involving non-zero messenger supertrace. I propose several new
methods for generating negative messenger supertraces which result in viable
positive mass squareds for MSSM scalars. The resultant spectra are novel,
compressed and may contain light fermionic SM adjoint fields.Comment: 16 pages 3 figure
A Bound on the Superpotential
We prove a general bound on the superpotential in theories with broken
supersymmetry and broken R-symmetry, 2|W|< f_a F, where f_a and F are the
R-axion and Goldstino decay constants, respectively. The bound holds for weakly
coupled as well as strongly coupled theories, thereby providing an exact result
in theories with broken supersymmetry. We briefly discuss several possible
applications.Comment: 20 page
The Schrdinger-Poisson equations as the large-N limit of the Newtonian N-body system: applications to the large scale dark matter dynamics
In this paper it is argued how the dynamics of the classical Newtonian N-body
system can be described in terms of the Schrdinger-Poisson equations
in the large limit. This result is based on the stochastic quantization
introduced by Nelson, and on the Calogero conjecture. According to the Calogero
conjecture, the emerging effective Planck constant is computed in terms of the
parameters of the N-body system as , where is the gravitational constant, and are the
number and the mass of the bodies, and is their average density. The
relevance of this result in the context of large scale structure formation is
discussed. In particular, this finding gives a further argument in support of
the validity of the Schrdinger method as numerical double of the
N-body simulations of dark matter dynamics at large cosmological scales.Comment: Accepted for publication in the Euro. Phys. J.
Big-Data-Driven Materials Science and its FAIR Data Infrastructure
This chapter addresses the forth paradigm of materials research -- big-data
driven materials science. Its concepts and state-of-the-art are described, and
its challenges and chances are discussed. For furthering the field, Open Data
and an all-embracing sharing, an efficient data infrastructure, and the rich
ecosystem of computer codes used in the community are of critical importance.
For shaping this forth paradigm and contributing to the development or
discovery of improved and novel materials, data must be what is now called FAIR
-- Findable, Accessible, Interoperable and Re-purposable/Re-usable. This sets
the stage for advances of methods from artificial intelligence that operate on
large data sets to find trends and patterns that cannot be obtained from
individual calculations and not even directly from high-throughput studies.
Recent progress is reviewed and demonstrated, and the chapter is concluded by a
forward-looking perspective, addressing important not yet solved challenges.Comment: submitted to the Handbook of Materials Modeling (eds. S. Yip and W.
Andreoni), Springer 2018/201
- …
