96 research outputs found
Heritability of seed weight in Maritime pine, a relevant trait in the transmission of environmental maternal effects
Quantitative seed provisioning is an important life-history trait with strong effects on offspring phenotype and fitness. As for any other trait, heritability estimates are vital for understanding its evolutionary dynamics. However, being a trait in between two generations, estimating additive genetic variation of seed provisioning requires complex quantitative genetic approaches for distinguishing between true genetic and environmental maternal effects. Here, using Maritime pine as a long-lived plant model, we quantified additive genetic variation of cone and seed weight (SW) mean and SW within-individual variation. We used a powerful approach combining both half-sib analysis and parent-offspring regression using several common garden tests established in contrasting environments to separate G, E and G x E effects. Both cone weight and SW mean showed significant genetic variation but were also influenced by the maternal environment. Most of the large variation in SW mean was attributable to additive genetic effects (h(2) = 0.55-0.74). SW showed no apparent G x E interaction, particularly when accounting for cone weight covariation, suggesting that the maternal genotypes actively control the SW mean irrespective of the amount of resources allocated to cones. Within-individual variation in SW was low (12%) relative to between-individual variation (88%), and showed no genetic variation but was largely affected by the maternal environment, with greater variation in the less favourable sites for pine growth. In summary, results were very consistent between the parental and the offspring common garden tests, and clearly indicated heritable genetic variation for SW mean but not for within-individual variation in SW.This study was financed by the Spanish National Research Grants RTA2007-100 and AGL2012-40151 (FENOPIN), both co-financed by EU-FEDER. The progeny trials and the clonal seed orchards are part of the experimental set up of the Maritime pine breeding programme developed by the Centro de Investigacion Forestal de Lourizan, Xunta de Galicia.Spanish National Research Grant RTA2007-100Spanish National Research Grant AGL2012-40151 (FENOPIN)EU-FEDERPeer reviewe
Effective Rheology of Bubbles Moving in a Capillary Tube
We calculate the average volumetric flux versus pressure drop of bubbles
moving in a single capillary tube with varying diameter, finding a square-root
relation from mapping the flow equations onto that of a driven overdamped
pendulum. The calculation is based on a derivation of the equation of motion of
a bubble train from considering the capillary forces and the entropy production
associated with the viscous flow. We also calculate the configurational
probability of the positions of the bubbles.Comment: 4 pages, 1 figur
Invariant computations in local cortical networks with balanced excitation and inhibition
[Abstract] Cortical computations critically involve local neuronal circuits. The computations are often invariant across a cortical area yet are carried out by networks that can vary widely within an area according to its functional architecture. Here we demonstrate a mechanism by which orientation selectivity is computed invariantly in cat primary visual cortex across an orientation preference map that provides a wide diversity of local circuits. Visually evoked excitatory and inhibitory synaptic conductances are balanced exquisitely in cortical neurons and thus keep the spike response sharply tuned at all map locations. This functional balance derives from spatially isotropic local connectivity of both excitatory and inhibitory cells. Modeling results demonstrate that such covariation is a signature of recurrent rather than purely feed-forward processing and that the observed isotropic local circuit is sufficient to generate invariant spike tuning
The perinatal androgen to estrogen ratio and autistic-like traits in the general population: a longitudinal pregnancy cohort study
BACKGROUND: Prenatal androgen exposure has been hypothesized to be linked to autism spectrum disorder (ASD). While previous studies have found a link between testosterone levels in amniotic fluid and autistic-like traits, a similar relationship has not been found for testosterone in umbilical cord blood. However, it may be the net biological activity of multiple androgens and estrogens that influences postnatal effects of prenatal sex steroids. Accordingly, composite levels of androgens (A) and estrogens (E) were investigated, along with their ratio, in relation to autistic-like traits in young adulthood. METHODS: Sex steroid data in umbilical cord blood were available from 860 individuals at delivery. Samples were analyzed for androgens (testosterone, androstenedione, and dehydroepiandrosterone) and estrogens (estrone, estradiol, estriol, and estetrol). Levels of bioavailable testosterone, estradiol, and estrone were measured and used to calculate A and E composites and the A to E ratio. Participants were approached in early adulthood to complete the autism-spectrum quotient (AQ) as a self-report measure of autistic-like traits, with 183 males (Mâ=â20.10Â years, SDâ=â0.65Â years) and 189 females (M =19.92Â years, SDâ=â0.68Â years) providing data. RESULTS: Males exhibited significantly higher androgen composites and A to E composite ratios than females. Males also scored significantly higher on the details/patterns subscale of the AQ. Subsequent categorical and continuous analyses, which accounted for covariates, revealed no substantial relationships between the A/E composites or the A to E ratio and the AQ total or subscale scores. CONCLUSIONS: The current study found no link between the A/E composites or the A to E ratio in cord blood and autistic-like traits in the population as measured by the AQ. These outcomes do not exclude the possibility that these sex steroid variables may predict other neurodevelopmental traits in early development. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s11689-015-9114-9) contains supplementary material, which is available to authorized users
From gut dysbiosis to altered brain function and mental illness: mechanisms and pathways
The human body hosts an enormous abundance and diversity of microbes, which perform a range of essential and beneficial functions. Our appreciation of the importance of these microbial communities to many aspects of human physiology has grown dramatically in recent years. We know, for example, that animals raised in a germ-free environment exhibit substantially altered immune and metabolic function, while the disruption of commensal microbiota in humans is associated with the development of a growing number of diseases. Evidence is now emerging that, through interactions with the gut-brain axis, the bidirectional communication system between the central nervous system and the gastrointestinal tract, the gut microbiome can also influence neural development, cognition and behaviour, with recent evidence that changes in behaviour alter gut microbiota composition, while modifications of the microbiome can induce depressive-like behaviours. Although an association between enteropathy and certain psychiatric conditions has long been recognized, it now appears that gut microbes represent direct mediators of psychopathology. Here, we examine roles of gut microbiome in shaping brain development and neurological function, and the mechanisms by which it can contribute to mental illness. Further, we discuss how the insight provided by this new and exciting field of research can inform care and provide a basis for the design of novel, microbiota-targeted, therapies.GB Rogers, DJ Keating, RL Young, M-L Wong, J Licinio, and S Wesseling
- âŠ