130 research outputs found

    Is it really search or just matching? The influence of goodness, number of stimuli and presentation sequence in same-different tasks

    Get PDF
    The Goodness of Garner dot patterns has been shown to influence same-different response times in a specific way, which has led to the formulation of a memory search model of pattern comparison. In this model, the space of possible variations of each pattern is searched separately for each pattern in the comparison, resulting in faster response times for patterns that have fewer alternatives. Compared to an alternative explanation based on stimulus encoding plus mental rotation, however, the existing data strongly favor this explanation. To obtain a more constraining set of data to distinguish between the two possible accounts, we extended the original paradigm to a situation in which participants needed to compare three, rather than two patterns and varied the way the stimuli were presented (simultaneously or sequentially). Our findings suggest that neither the memory search nor the encoding plus mental rotation model provides a complete description of the data, and that the effects of Goodness must be understood in a combination of both mechanisms, or in terms of cascades processing

    A Novel Cre Recombinase Imaging System for Tracking Lymphotropic Virus Infection In Vivo

    Get PDF
    BACKGROUND:Detection, isolation, and identification of individual virus infected cells during long term infection are critical to advance our understanding of mechanisms of pathogenesis for latent/persistent viruses. However, current approaches to study these viruses in vivo have been hampered by low sensitivity and effects of cell-type on expression of viral encoded reporter genes. We have designed a novel Cre recombinase (Cre)-based murine system to overcome these problems, and thereby enable tracking and isolation of individual in vivo infected cells. METHODOLOGY/PRINCIPAL FINDINGS:Murine gammaherpesvirus 68 (MHV-68) was used as a prototypic persistent model virus. A Cre expressing recombinant virus was constructed and characterised. The virus is attenuated both in lytic virus replication, producing ten-fold lower lung virus titres than wild type virus, and in the establishment of latency. However, despite this limitation, when the sEGFP7 mouse line containing a Cre-activated enhanced green fluorescent protein (EGFP) was infected with the Cre expressing virus, sites of latent and persistent virus infection could be identified within B cells and macrophages of the lymphoid system on the basis of EGFP expression. Importantly, the use of the sEGFP7 mouse line which expresses high levels of EGFP allowed individual virus positive cells to be purified by FACSorting. Virus gene expression could be detected in these cells. Low numbers of EGFP positive cells could also be detected in the bone marrow. CONCLUSIONS/SIGNIFICANCE:The use of this novel Cre-based virus/mouse system allowed identification of individual latently infected cells in vivo and may be useful for the study and long-term monitoring of other latent/persistent virus infections

    Renal amyloidosis in children

    Get PDF
    Renal amyloidosis is a detrimental disease caused by the deposition of amyloid fibrils. A child with renal amyloidosis may present with proteinuria or nephrotic syndrome. Chronic renal failure may follow. Amyloid fibrils may deposit in other organs as well. The diagnosis is through the typical appearance on histopathology. Although chronic infections and chronic inflammatory diseases used to be the causes of secondary amyloidosis in children, the most frequent cause is now autoinflammatory diseases. Among this group of diseases, the most frequent one throughout the world is familial Mediterranean fever (FMF). FMF is typically characterized by attacks of clinical inflammation in the form of fever and serositis and high acute-phase reactants. Persisting inflammation in inadequately treated disease is associated with the development of secondary amyloidosis. The main treatment is colchicine. A number of other monogenic autoinflammatory diseases have also been identified. Among them cryopyrin-associated periodic syndrome (CAPS) is outstanding with its clinical features and the predilection to develop secondary amyloidosis in untreated cases. The treatment of secondary amyloidosis mainly depends on the treatment of the disease. However, a number of new treatments for amyloid per se are in the pipeline

    Clinical impact of a targeted next-generation sequencing gene panel for autoinflammation and vasculitis.

    Get PDF
    BACKGROUND: Monogenic autoinflammatory diseases (AID) are a rapidly expanding group of genetically diverse but phenotypically overlapping systemic inflammatory disorders associated with dysregulated innate immunity. They cause significant morbidity, mortality and economic burden. Here, we aimed to develop and evaluate the clinical impact of a NGS targeted gene panel, the "Vasculitis and Inflammation Panel" (VIP) for AID and vasculitis. METHODS: The Agilent SureDesign tool was used to design 2 versions of VIP; VIP1 targeting 113 genes, and a later version, VIP2, targeting 166 genes. Captured and indexed libraries (QXT Target Enrichment System) prepared for 72 patients were sequenced as a multiplex of 16 samples on an Illumina MiSeq sequencer in 150bp paired-end mode. The cohort comprised 22 positive control DNA samples from patients with previously validated mutations in a variety of the genes; and 50 prospective samples from patients with suspected AID in whom previous Sanger based genetic screening had been non-diagnostic. RESULTS: VIP was sensitive and specific at detecting all the different types of known mutations in 22 positive controls, including gene deletion, small INDELS, and somatic mosaicism with allele fraction as low as 3%. Six/50 patients (12%) with unclassified AID had at least one class 5 (clearly pathogenic) variant; and 11/50 (22%) had at least one likely pathogenic variant (class 4). Overall, testing with VIP resulted in a firm or strongly suspected molecular diagnosis in 16/50 patients (32%). CONCLUSIONS: The high diagnostic yield and accuracy of this comprehensive targeted gene panel validate the use of broad NGS-based testing for patients with suspected AID

    Identification of Eps15 as Antigen Recognized by the Monoclonal Antibodies aa2 and ab52 of the Wuerzburg Hybridoma Library against Drosophila Brain

    Get PDF
    The Wuerzburg Hybridoma Library against the Drosophila brain represents a collection of around 200 monoclonal antibodies that bind to specific structures in the Drosophila brain. Here we describe the immunohistochemical staining patterns, the Western blot signals of one- and two-dimensional electrophoretic separation, and the mass spectrometric characterization of the target protein candidates recognized by the monoclonal antibodies aa2 and ab52 from the library. Analysis of a mutant of a candidate gene identified the Drosophila homolog of the Epidermal growth factor receptor Pathway Substrate clone 15 (Eps15) as the antigen for these two antibodies

    Receptor Heteromerization Expands the Repertoire of Cannabinoid Signaling in Rodent Neurons

    Get PDF
    A fundamental question in G protein coupled receptor biology is how a single ligand acting at a specific receptor is able to induce a range of signaling that results in a variety of physiological responses. We focused on Type 1 cannabinoid receptor (CB1R) as a model GPCR involved in a variety of processes spanning from analgesia and euphoria to neuronal development, survival and differentiation. We examined receptor dimerization as a possible mechanism underlying expanded signaling responses by a single ligand and focused on interactions between CB1R and delta opioid receptor (DOR). Using co-immunoprecipitation assays as well as analysis of changes in receptor subcellular localization upon co-expression, we show that CB1R and DOR form receptor heteromers. We find that heteromerization affects receptor signaling since the potency of the CB1R ligand to stimulate G-protein activity is increased in the absence of DOR, suggesting that the decrease in CB1R activity in the presence of DOR could, at least in part, be due to heteromerization. We also find that the decrease in activity is associated with enhanced PLC-dependent recruitment of arrestin3 to the CB1R-DOR complex, suggesting that interaction with DOR enhances arrestin-mediated CB1R desensitization. Additionally, presence of DOR facilitates signaling via a new CB1R-mediated anti-apoptotic pathway leading to enhanced neuronal survival. Taken together, these results support a role for CB1R-DOR heteromerization in diversification of endocannabinoid signaling and highlight the importance of heteromer-directed signal trafficking in enhancing the repertoire of GPCR signaling

    CTRP6 is an endogenous complement regulator that can effectively treat induced arthritis

    Get PDF
    The complement system is important for the host defence against infection as well as for the development of inflammatory diseases. Here we show that C1q/TNF-related protein 6 (CTRP6; gene symbol C1qtnf6) expression is elevated in mouse rheumatoid arthritis (RA) models. C1qtnf6 -/- mice are highly susceptible to induced arthritis due to enhanced complement activation, whereas C1qtnf6-transgenic mice are refractory. The Arthus reaction and the development of experimental autoimmune encephalomyelitis are also enhanced in C1qtnf6 -/- mice and C1qtnf6 -/- embryos are semi-lethal. We find that CTRP6 specifically suppresses the alternative pathway of the complement system by competing with factor B for C3(H 2 O) binding. Furthermore, treatment of arthritis-induced mice with intra-articular injection of recombinant human CTRP6 cures the arthritis. CTRP6 is expressed in human synoviocytes, and CTRP6 levels are increased in RA patients. These results indicate that CTRP6 is an endogenous complement regulator and could be used for the treatment of complement-mediated diseases

    An integrative approach for building personalized gene regulatory networks for precision medicine

    Get PDF
    Only a small fraction of patients respond to the drug prescribed to treat their disease, which means that most are at risk of unnecessary exposure to side effects through ineffective drugs. This inter-individual variation in drug response is driven by differences in gene interactions caused by each patient's genetic background, environmental exposures, and the proportions of specific cell types involved in disease. These gene interactions can now be captured by building gene regulatory networks, by taking advantage of RNA velocity (the time derivative of the gene expression state), the ability to study hundreds of thousands of cells simultaneously, and the falling price of single-cell sequencing. Here, we propose an integrative approach that leverages these recent advances in single-cell data with the sensitivity of bulk data to enable the reconstruction of personalized, cell-type- and context-specific gene regulatory networks. We expect this approach will allow the prioritization of key driver genes for specific diseases and will provide knowledge that opens new avenues towards improved personalized healthcare
    corecore