753 research outputs found
The motion of point particles in curved spacetime
This review is concerned with the motion of a point scalar charge, a point
electric charge, and a point mass in a specified background spacetime. In each
of the three cases the particle produces a field that behaves as outgoing
radiation in the wave zone, and therefore removes energy from the particle. In
the near zone the field acts on the particle and gives rise to a self-force
that prevents the particle from moving on a geodesic of the background
spacetime. The field's action on the particle is difficult to calculate because
of its singular nature: the field diverges at the position of the particle. But
it is possible to isolate the field's singular part and show that it exerts no
force on the particle -- its only effect is to contribute to the particle's
inertia. What remains after subtraction is a smooth field that is fully
responsible for the self-force. Because this field satisfies a homogeneous wave
equation, it can be thought of as a free (radiative) field that interacts with
the particle; it is this interaction that gives rise to the self-force. The
mathematical tools required to derive the equations of motion of a point scalar
charge, a point electric charge, and a point mass in a specified background
spacetime are developed here from scratch. The review begins with a discussion
of the basic theory of bitensors (part I). It then applies the theory to the
construction of convenient coordinate systems to chart a neighbourhood of the
particle's word line (part II). It continues with a thorough discussion of
Green's functions in curved spacetime (part III). The review concludes with a
detailed derivation of each of the three equations of motion (part IV).Comment: LaTeX2e, 116 pages, 10 figures. This is the final version, as it will
appear in Living Reviews in Relativit
Contrasting prefrontal cortex contributions to episodic memory dysfunction in behavioural variant frontotemporal dementia and alzheimer's disease
Recent evidence has questioned the integrity of episodic memory in behavioural variant frontotemporal dementia (bvFTD), where recall performance is impaired to the same extent as in Alzheimer's disease (AD). While these deficits appear to be mediated by divergent patterns of brain atrophy, there is evidence to suggest that certain prefrontal regions are implicated across both patient groups. In this study we sought to further elucidate the dorsolateral (DLPFC) and ventromedial (VMPFC) prefrontal contributions to episodic memory impairment in bvFTD and AD. Performance on episodic memory tasks and neuropsychological measures typically tapping into either DLPFC or VMPFC functions was assessed in 22 bvFTD, 32 AD patients and 35 age- and education-matched controls. Behaviourally, patient groups did not differ on measures of episodic memory recall or DLPFC-mediated executive functions. BvFTD patients were significantly more impaired on measures of VMPFC-mediated executive functions. Composite measures of the recall, DLPFC and VMPFC task scores were covaried against the T1 MRI scans of all participants to identify regions of atrophy correlating with performance on these tasks. Imaging analysis showed that impaired recall performance is associated with divergent patterns of PFC atrophy in bvFTD and AD. Whereas in bvFTD, PFC atrophy covariates for recall encompassed both DLPFC and VMPFC regions, only the DLPFC was implicated in AD. Our results suggest that episodic memory deficits in bvFTD and AD are underpinned by divergent prefrontal mechanisms. Moreover, we argue that these differences are not adequately captured by existing neuropsychological measures
Quality control and beam test of GEM detectors for future upgrades of the CMS muon high rate region at the LHC
Gas Electron Multipliers (GEM) are a proven position sensitive gas detector technology which nowadays is becoming more widely used in High Energy Physics. GEMs offer an excellent spatial resolution and a high particle rate capability, with a close to 100% detection efficiency. In view of the high luminosity phase of the CERN Large Hadron Collider, these aforementioned features make GEMs suitable candidates for the future upgrades of the Compact Muon Solenoid (CMS) detector. In particular, the CMS GEM Collaboration proposes to cover the high-eta region of the muon system with large-area triple-GEM detectors, which have the ability to provide robust and redundant tracking and triggering functions. In this contribution, after a general introduction and overview of the project, the construction of full-size trapezoidal triple-GEM prototypes will be described in more detail. The procedures for the quality control of the GEM foils, including gain uniformity measurements with an x-ray source will be presented. In the past few years, several CMS triple-GEM prototype detectors were operated with test beams at the CERN SPS. The results of these test beam campaigns will be summarised
Biophysical Characteristics Reveal Neural Stem Cell Differentiation Potential
Distinguishing human neural stem/progenitor cell (huNSPC) populations that will predominantly generate neurons from those that produce glia is currently hampered by a lack of sufficient cell type-specific surface markers predictive of fate potential. This limits investigation of lineage-biased progenitors and their potential use as therapeutic agents. A live-cell biophysical and label-free measure of fate potential would solve this problem by obviating the need for specific cell surface markers
In vivo bioimaging with tissue-specific transcription factor activated luciferase reporters.
The application of transcription factor activated luciferase reporter cassettes in vitro is widespread but potential for in vivo application has not yet been realized. Bioluminescence imaging enables non-invasive tracking of gene expression in transfected tissues of living rodents. However the mature immune response limits luciferase expression when delivered in adulthood. We present a novel approach of tissue-targeted delivery of transcription factor activated luciferase reporter lentiviruses to neonatal rodents as an alternative to the existing technology of generating germline transgenic light producing rodents. At this age, neonates acquire immune tolerance to the conditionally responsive luciferase reporter. This simple and transferrable procedure permits surrogate quantitation of transcription factor activity over the lifetime of the animal. We show principal efficacy by temporally quantifying NFκB activity in the brain, liver and lungs of somatotransgenic reporter mice subjected to lipopolysaccharide (LPS)-induced inflammation. This response is ablated in Tlr4(-/-) mice or when co-administered with the anti-inflammatory glucocorticoid analogue dexamethasone. Furthermore, we show the malleability of this technology by quantifying NFκB-mediated luciferase expression in outbred rats. Finally, we use somatotransgenic bioimaging to longitudinally quantify LPS- and ActivinA-induced upregulation of liver specific glucocorticoid receptor and Smad2/3 reporter constructs in somatotransgenic mice, respectively
f(R) theories
Over the past decade, f(R) theories have been extensively studied as one of
the simplest modifications to General Relativity. In this article we review
various applications of f(R) theories to cosmology and gravity - such as
inflation, dark energy, local gravity constraints, cosmological perturbations,
and spherically symmetric solutions in weak and strong gravitational
backgrounds. We present a number of ways to distinguish those theories from
General Relativity observationally and experimentally. We also discuss the
extension to other modified gravity theories such as Brans-Dicke theory and
Gauss-Bonnet gravity, and address models that can satisfy both cosmological and
local gravity constraints.Comment: 156 pages, 14 figures, Invited review article in Living Reviews in
Relativity, Published version, Comments are welcom
c-Kit-Mediated Functional Positioning of Stem Cells to Their Niches Is Essential for Maintenance and Regeneration of Adult Hematopoiesis
The mechanism by which hematopoietic stem and progenitor cells (HSPCs) through interaction with their niches maintain and reconstitute adult hematopoietic cells is unknown. To functionally and genetically track localization of HSPCs with their niches, we employed novel mutant loxPs, lox66 and lox71 and Cre-recombinase technology to conditionally delete c-Kit in adult mice, while simultaneously enabling GFP expression in the c-Kit-deficient cells. Conditional deletion of c-Kit resulted in hematopoietic failure and splenic atrophy both at steady state and after marrow ablation leading to the demise of the treated adult mice. Within the marrow, the c-Kit-expressing GFP+ cells were positioned to Kit ligand (KL)-expressing niche cells. This c-Kit-mediated cellular adhesion was essential for long-term maintenance and expansion of HSPCs. These results lay the foundation for delivering KL within specific niches to maintain and restore hematopoiesis
The Evolution of Compact Binary Star Systems
We review the formation and evolution of compact binary stars consisting of
white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and
BHs are thought to be the primary astrophysical sources of gravitational waves
(GWs) within the frequency band of ground-based detectors, while compact
binaries of WDs are important sources of GWs at lower frequencies to be covered
by space interferometers (LISA). Major uncertainties in the current
understanding of properties of NSs and BHs most relevant to the GW studies are
discussed, including the treatment of the natal kicks which compact stellar
remnants acquire during the core collapse of massive stars and the common
envelope phase of binary evolution. We discuss the coalescence rates of binary
NSs and BHs and prospects for their detections, the formation and evolution of
binary WDs and their observational manifestations. Special attention is given
to AM CVn-stars -- compact binaries in which the Roche lobe is filled by
another WD or a low-mass partially degenerate helium-star, as these stars are
thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure
Atypical depression is more common than melancholic in fibromyalgia: an observational cohort study
<p>Abstract</p> <p>Background</p> <p>It has been postulated that atypical and melancholic depression subtypes exist in depressed fibromyalgia (FM) patients, yet no study has empirically tested this hypothesis. The purpose of this study is to determine whether major depressive disorder (MDD) with atypical features and MDD with melancholic features occurs in a FM sample and to describe their demographic, clinical and diagnostic characteristics.</p> <p>Methods</p> <p>An observational cohort study using a descriptive cross-sectional design recruited a convenience sample of 76 outpatients with FM from an academic Rheumatology clinic and a community mental health practice. Diagnoses of FM were confirmed using the 1990 ACR classification guidelines. Diagnoses of MDD and diagnostic subtypes were determined using the DSM-IV-TR criteria. Clinical characteristics were measured using the Fibromyalgia Impact Questionnaire, Structured Interview Guide for the Hamilton Depression Rating Scale with Atypical Depression Supplement and other standardized instruments. Odds ratios were computed on subtype-specific diagnostic criteria. Correlations assessed associations between subtype diagnoses and diagnostic criteria.</p> <p>Results</p> <p>Of the 76 subjects with FM, 11.8% (n = 9) were euthymic, 52.6% (n = 40) met diagnostic criteria for MDD with atypical features and 35.6% (n = 27) for MDD with melancholic features. Groups did not differ on demographic characteristics except for gender (p = 0.01). The non-depressed and atypical groups trended toward having a longer duration of FM symptoms (18.05 yrs. ± 12.83; 20.36 yrs. ± 15.07) compared to the melancholic group (14.11 yrs. ± 8.82; p = 0.09). The two depressed groups experienced greater severity on all clinical features compared to the non-depressed group. The atypical group did not differ clinically from the melancholic group except the latter experienced greater depression severity (p = 0.001). The atypical group demonstrated the highest prevalence and correlations with atypical-specific diagnostic criteria: (e.g., weight gain/ increased appetite: OR = 3.5, p = 0.02), as did the melancholic group for melancholic-specific criteria: (e.g., anhedonia: OR = 20, p < 0.001).</p> <p>Conclusion</p> <p>Depressed fibromyalgia patients commonly experience both atypical and melancholic depressive features; however, in this study, atypical depression was 1.5 times more common than melancholic depression. This finding may have significant research and clinical implications.</p
- …