626 research outputs found

    A role for human brain pericytes in neuroinflammation

    Get PDF
    BACKGROUND: Brain inflammation plays a key role in neurological disease. Although much research has been conducted investigating inflammatory events in animal models, potential differences in human brain versus rodent models makes it imperative that we also study these phenomena in human cells and tissue. METHODS: Primary human brain cell cultures were generated from biopsy tissue of patients undergoing surgery for drug-resistant epilepsy. Cells were treated with pro-inflammatory compounds IFNγ, TNFα, IL-1β, and LPS, and chemokines IP-10 and MCP-1 were measured by immunocytochemistry, western blot, and qRT-PCR. Microarray analysis was also performed on late passage cultures treated with vehicle or IFNγ and IL-1β. RESULTS: Early passage human brain cell cultures were a mixture of microglia, astrocytes, fibroblasts and pericytes. Later passage cultures contained proliferating fibroblasts and pericytes only. Under basal culture conditions all cell types showed cytoplasmic NFκB indicating that they were in a non-activated state. Expression of IP-10 and MCP-1 were significantly increased in response to pro-inflammatory stimuli. The two chemokines were expressed in mixed cultures as well as cultures of fibroblasts and pericytes only. The expression of IP-10 and MCP-1 were regulated at the mRNA and protein level, and both were secreted into cell culture media. NFκB nuclear translocation was also detected in response to pro-inflammatory cues (except IFNγ) in all cell types. Microarray analysis of brain pericytes also revealed widespread changes in gene expression in response to the combination of IFNγ and IL-1β treatment including interleukins, chemokines, cellular adhesion molecules and much more. CONCLUSIONS: Adult human brain cells are sensitive to cytokine challenge. As expected 'classical' brain immune cells, such as microglia and astrocytes, responded to cytokine challenge but of even more interest, brain pericytes also responded to such challenge with a rich repertoire of gene expression. Immune activation of brain pericytes may play an important role in communicating inflammatory signals to and within the brain interior and may also be involved in blood brain barrier (BBB) disruption . Targeting brain pericytes, as well as microglia and astrocytes, may provide novel opportunities for reducing brain inflammation and maintaining BBB function and brain homeostasis in human brain disease

    In-Flight Transmission of SARS-CoV-2.

    Get PDF
    Four persons with severe acute respiratory syndrome coronavirus 2 infection had traveled on the same flight from Boston, Massachusetts, USA, to Hong Kong, China. Their virus genetic sequences are identical, unique, and belong to a clade not previously identified in Hong Kong, which strongly suggests that the virus can be transmitted during air travel

    Methods for Collecting Milk from Mice

    Get PDF
    Mouse models offer unique opportunities to study mammary gland biology and lactation. Phenotypes within the mammary glands, especially those caused by genetic modification, often arise during lactation, and their study requires the collection of adequate volumes of milk. We describe two approaches for collecting milk from lactating mice. Both methods are inexpensive, are easy to use in the laboratory or classroom, are non-invasive, and yield adequate volumes of milk for subsequent analyses

    Needs assessment to strengthen capacity in water and sanitation research in Africa:experiences of the African SNOWS consortium

    Get PDF
    Despite its contribution to global disease burden, diarrhoeal disease is still a relatively neglected area for research funding, especially in low-income country settings. The SNOWS consortium (Scientists Networked for Outcomes from Water and Sanitation) is funded by the Wellcome Trust under an initiative to build the necessary research skills in Africa. This paper focuses on the research training needs of the consortium as identified during the first three years of the project

    Increased ventral striatal volume in college-aged binge drinkers

    Get PDF
    BACKGROUND Binge drinking is a serious public health issue associated with cognitive, physiological, and anatomical differences from healthy individuals. No studies, however, have reported subcortical grey matter differences in this population. To address this, we compared the grey matter volumes of college-age binge drinkers and healthy controls, focusing on the ventral striatum, hippocampus and amygdala. METHOD T1-weighted images of 19 binge drinkers and 19 healthy volunteers were analyzed using voxel-based morphometry. Structural data were also covaried with Alcohol Use Disorders Identification Test (AUDIT) scores. Cluster-extent threshold and small volume corrections were both used to analyze imaging data. RESULTS Binge drinkers had significantly larger ventral striatal grey matter volumes compared to controls. There were no between group differences in hippocampal or amygdalar volume. Ventral striatal, amygdalar, and hippocampal volumes were also negatively related to AUDIT scores across groups. CONCLUSIONS Our findings stand in contrast to the lower ventral striatal volume previously observed in more severe forms of alcohol use disorders, suggesting that college-age binge drinkers may represent a distinct population from those groups. These findings may instead represent early sequelae, compensatory effects of repeated binge and withdrawal, or an endophenotypic risk factor

    The transcriptional response of Caenorhabditis elegans to ivermectin exposure identifies novel genes involved in the response to reduced food intake

    Get PDF
    We have examined the transcriptional response of Caenorhabditis elegans following exposure to the anthelmintic drug ivermectin (IVM) using whole genome microarrays and real-time QPCR. Our original aim was to identify candidate molecules involved in IVM metabolism and/or excretion. For this reason the IVM tolerant strain, DA1316, was used to minimise transcriptomic changes related to the phenotype of drug exposure. However, unlike equivalent work with benzimidazole drugs, very few of the induced genes were members of xenobiotic metabolising enzyme families. Instead, the transcriptional response was dominated by genes associated with fat mobilization and fatty acid metabolism including catalase, esterase, and fatty acid CoA synthetase genes. This is consistent with the reduction in pharyngeal pumping, and consequential reduction in food intake, upon exposure of DA1316 worms to IVM. Genes with the highest fold change in response to IVM exposure, cyp-37B1, mtl-1 and scl-2, were comparably up-regulated in response to short–term food withdrawal (4 hr) independent of IVM exposure, and GFP reporter constructs confirm their expression in tissues associated with fat storage (intestine and hypodermis). These experiments have serendipitously identified novel genes involved in an early response of C. elegans to reduced food intake and may provide insight into similar processes in higher organisms

    Mapping gene associations in human mitochondria using clinical disease phenotypes

    Get PDF
    Nuclear genes encode most mitochondrial proteins, and their mutations cause diverse and debilitating clinical disorders. To date, 1,200 of these mitochondrial genes have been recorded, while no standardized catalog exists of the associated clinical phenotypes. Such a catalog would be useful to develop methods to analyze human phenotypic data, to determine genotype-phenotype relations among many genes and diseases, and to support the clinical diagnosis of mitochondrial disorders. Here we establish a clinical phenotype catalog of 174 mitochondrial disease genes and study associations of diseases and genes. Phenotypic features such as clinical signs and symptoms were manually annotated from full-text medical articles and classified based on the hierarchical MeSH ontology. This classification of phenotypic features of each gene allowed for the comparison of diseases between different genes. In turn, we were then able to measure the phenotypic associations of disease genes for which we calculated a quantitative value that is based on their shared phenotypic features. The results showed that genes sharing more similar phenotypes have a stronger tendency for functional interactions, proving the usefulness of phenotype similarity values in disease gene network analysis. We then constructed a functional network of mitochondrial genes and discovered a higher connectivity for non-disease than for disease genes, and a tendency of disease genes to interact with each other. Utilizing these differences, we propose 168 candidate genes that resemble the characteristic interaction patterns of mitochondrial disease genes. Through their network associations, the candidates are further prioritized for the study of specific disorders such as optic neuropathies and Parkinson disease. Most mitochondrial disease phenotypes involve several clinical categories including neurologic, metabolic, and gastrointestinal disorders, which might indicate the effects of gene defects within the mitochondrial system. The accompanying knowledgebase (http://www.mitophenome.org/) supports the study of clinical diseases and associated genes

    Spatial Guilds in the Serengeti Food Web Revealed by a Bayesian Group Model

    Get PDF
    Food webs, networks of feeding relationships among organisms, provide fundamental insights into mechanisms that determine ecosystem stability and persistence. Despite long-standing interest in the compartmental structure of food webs, past network analyses of food webs have been constrained by a standard definition of compartments, or modules, that requires many links within compartments and few links between them. Empirical analyses have been further limited by low-resolution data for primary producers. In this paper, we present a Bayesian computational method for identifying group structure in food webs using a flexible definition of a group that can describe both functional roles and standard compartments. The Serengeti ecosystem provides an opportunity to examine structure in a newly compiled food web that includes species-level resolution among plants, allowing us to address whether groups in the food web correspond to tightly-connected compartments or functional groups, and whether network structure reflects spatial or trophic organization, or a combination of the two. We have compiled the major mammalian and plant components of the Serengeti food web from published literature, and we infer its group structure using our method. We find that network structure corresponds to spatially distinct plant groups coupled at higher trophic levels by groups of herbivores, which are in turn coupled by carnivore groups. Thus the group structure of the Serengeti web represents a mixture of trophic guild structure and spatial patterns, in contrast to the standard compartments typically identified in ecological networks. From data consisting only of nodes and links, the group structure that emerges supports recent ideas on spatial coupling and energy channels in ecosystems that have been proposed as important for persistence.Comment: 28 pages, 6 figures (+ 3 supporting), 2 tables (+ 4 supporting

    Organizational factors and depression management in community-based primary care settings

    Get PDF
    Abstract Background Evidence-based quality improvement models for depression have not been fully implemented in routine primary care settings. To date, few studies have examined the organizational factors associated with depression management in real-world primary care practice. To successfully implement quality improvement models for depression, there must be a better understanding of the relevant organizational structure and processes of the primary care setting. The objective of this study is to describe these organizational features of routine primary care practice, and the organization of depression care, using survey questions derived from an evidence-based framework. Methods We used this framework to implement a survey of 27 practices comprised of 49 unique offices within a large primary care practice network in western Pennsylvania. Survey questions addressed practice structure (e.g., human resources, leadership, information technology (IT) infrastructure, and external incentives) and process features (e.g., staff performance, degree of integrated depression care, and IT performance). Results The results of our survey demonstrated substantial variation across the practice network of organizational factors pertinent to implementation of evidence-based depression management. Notably, quality improvement capability and IT infrastructure were widespread, but specific application to depression care differed between practices, as did coordination and communication tasks surrounding depression treatment. Conclusions The primary care practices in the network that we surveyed are at differing stages in their organization and implementation of evidence-based depression management. Practical surveys such as this may serve to better direct implementation of these quality improvement strategies for depression by improving understanding of the organizational barriers and facilitators that exist within both practices and practice networks. In addition, survey information can inform efforts of individual primary care practices in customizing intervention strategies to improve depression management.http://deepblue.lib.umich.edu/bitstream/2027.42/78269/1/1748-5908-4-84.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78269/2/1748-5908-4-84-S1.PDFhttp://deepblue.lib.umich.edu/bitstream/2027.42/78269/3/1748-5908-4-84.pdfPeer Reviewe
    • …
    corecore