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Abstract

We have examined the transcriptional response of Caenorhabditis elegans following exposure to the anthelmintic drug
ivermectin (IVM) using whole genome microarrays and real-time QPCR. Our original aim was to identify candidate molecules
involved in IVM metabolism and/or excretion. For this reason the IVM tolerant strain, DA1316, was used to minimise
transcriptomic changes related to the phenotype of drug exposure. However, unlike equivalent work with benzimidazole
drugs, very few of the induced genes were members of xenobiotic metabolising enzyme families. Instead, the
transcriptional response was dominated by genes associated with fat mobilization and fatty acid metabolism including
catalase, esterase, and fatty acid CoA synthetase genes. This is consistent with the reduction in pharyngeal pumping, and
consequential reduction in food intake, upon exposure of DA1316 worms to IVM. Genes with the highest fold change in
response to IVM exposure, cyp-37B1, mtl-1 and scl-2, were comparably up-regulated in response to short–term food
withdrawal (4 hr) independent of IVM exposure, and GFP reporter constructs confirm their expression in tissues associated
with fat storage (intestine and hypodermis). These experiments have serendipitously identified novel genes involved in an
early response of C. elegans to reduced food intake and may provide insight into similar processes in higher organisms.
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Introduction

The macrocyclic lactone ivermectin (IVM) is one of the most

important drugs used for the control of animal and human

parasites [1,2]. It has been the mainstay of livestock parasite

control since the early 1980s, but intensive use has led to the

widespread development of drug resistance [2–5]. Over the last

decade IVM has been increasingly used in community-wide

treatment programs, aimed at the eradication of a number of

human filarial parasite species. Resistance appears now to be

emerging as a consequence of this intensive drug selection pressure

[6–8]. In order to maintain IVM efficacy in regions where

resistance has not arisen, and to aid in the development of novel

synergists, it is essential that the mechanism of action of the drug

and the molecular mechanisms employed by parasites that result

in resistance are elucidated.

Genetic, molecular and electrophysiological studies on the free-

living nematode Caenorhabditis elegans have been central to

identifying the major direct molecular targets of IVM [9–13]. It

acts by irreversibly binding to, and activating, ligand-gated ion

channels, particularly glutamate-gated chloride channels (GluCls),

resulting in paralysis of the body wall and pharyngeal muscles [14–

16]. This in turn leads to generalized paralysis and decreased

feeding. A number of comparative studies suggest that IVM acts in

a similar way in parasitic nematodes [15–17].

The ultimate effect of a drug on an organism is a balance

between the immediate effects of drug-receptor interaction;

secondary and compensatory responses to these interactions

(pharmacodynamics); and the effect of the organism on the drug

(pharmacokinetics). As discussed above, the immediate effect of

IVM-receptor interaction has been studied intensively, and is

known to cause pharyngeal and body wall paralysis. However, the

biological response of the nematode to this phenotype, and

potential compensatory mechanisms induced following drug

exposure, have received little attention. We have previously shown

that exposure of C. elegans to the benzimidazole drug albendazole

induces an array of xenobiotic metabolizing enzymes [18]. The

transcriptomic response of nematodes to IVM exposure, a highly

lipophilic drug that undergoes minimal metabolism in mammals,

has not previously been described [19].
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Wild-type C. elegans exposed to even low doses of ivermectin are

rapidly paralysed leading to death. In order to minimise non-

specific, stress-related changes in the transcriptome following drug

exposure, we made use of the strain DA1316, which has a null

mutation in three subunits of the glutamate-gated chloride channel

target of IVM. Although this strain is largely resistant to the

paralytic effects of IVM on the body wall, we found that following

four hours exposure to high doses of the drug there is a significant

decrease in pharyngeal function. As a result many of the

differences in gene expression noted between the IVM exposed

and unexposed groups are due to chemically induced reduced food

intake of the exposed nematodes.

As well as being accepted as a model for many features of

parasitic nematode biology, C. elegans is increasingly used as a

model for the basic biology of satiety and obesity [20,21]. There

have been many studies investigating the transcriptomic response

of C. elegans to starvation, in particular that of the long-lived,

anorexic dauer stage [22,23]. However, thus far investigation of

short-term food deprivation has been limited to real-time PCR

based studies of genes expected to be involved in this response

[24]. To the authors’ knowledge this is the first unbiased, whole-

genome investigation of the immediate effects of food deprivation

in C. elegans and in any whole organism.

Materials and Methods

C. elegans strains and maintenance
Strain DA1316 (avr-14(ad1302); avr-15(vu227); glc-1(pk54)) was

used in all experiments. This strain is a triple mutant of the

glutamate-gated chloride channel subunits avr-14, avr-15 and glc-1,

conferring high-level resistance to IVM (pers. Comm., Dr. J. Dent).

The wild-type strain used in pharyngeal pumping assays was the

Bristol N2 strain. Both strains were gifts from the Caenorhabditis

Genetics Center (CGC).

Synchronisation of cultures
Embryos were isolated by hypochlorite treatment of gravid

adults [25]. The embryos were transferred to a 5 cm diameter

Petri dish in 6 ml of S-buffer (129 ml/L 0.05 M K2HPO4,

871 ml/L 0.05 M KH2PO4, 0.1 M NaCl; pH 6.0), and main-

tained at 20uC overnight. The concentration of L1 larvae was

calculated the following day and experimental cultures initiated

immediately.

Pharyngeal pumping assay
IVM (Sigma, Gillingham, Dorset, UK) plates were prepared to

final concentrations of 0, 1, 10, 100 and 1000 ng/ml (0, 1.1 nM,

11.4 nM, 0.1 mM, 1.1 mM) IVM. Dimethyl sulphoxide (DMSO)

was used to dissolve the IVM and was present in all plates at a final

concentration of 0.01% v/v. Synchronised N2 and DA1316 L1

larvae were allowed to grow on standard nematode growth

medium (NGM) plates at 20uC for 53 hr. The L4/young adults

were then picked on to drug plates and allowed to remain at 20uC
for a further 4 hr. The number of pharyngeal pumps was counted

over a period of 1 min for five worms of each strain at each

concentration of drug.

Anthelmintic exposures
Ten thousand DA1316 L1 larvae per experimental condition

were grown for 53 hr at 20uC on standard NGM plates with OP50

bacterial lawns. The nematodes were assessed for comparable

staging between groups then washed from the plates with M9

buffer into a 50 ml falcon tube and washed twice in M9 buffer.

The suspension of worms was split equally between control plates

(DMSO 0.001% and 0.01% v/v for 100 ng/ml (0.1 mM) and

1 mg/ml (1.1 mM) IVM experiments respectively) and plates

containing 100 ng/ml (0.1 mM) or 1 mg/ml (1.1 mM) IVM (Sigma,

Gillingham, Dorset, UK) at a density of 500–600 worms per 5 cm

diameter plate. Drug and control plates were made and seeded

with 100 ml OP50 suspension 16–24 hr prior to the introduction of

the larvae. After 4 hr exposure the nematodes were washed from

the drug plates with M9 buffer, washed twice in M9 and the pellet

of worms snap frozen and stored in liquid nitrogen until RNA

extraction.

Real-time QPCR biological replicates
Separate biological replicates were carried out for analysis by

real-time QPCR (RTPCR) in an identical manner to the

microarray experiments except for the use of a commercial

preparation of IVM (Virbamec 5 mg/ml IVM, Virbac, Bury St.

Edmunds, Suffolk, UK). In order to compare the transcriptomic

response to IVM exposure and short-term food deprivation,

nematodes were first grown as per the acute drug exposure

protocol and then transferred either to plates containing IVM,

control plates or control plates with no OP50 food source for 4 hr

before harvesting. Investigation of gene up-regulation following

exposure to a gradient of IVM concentrations was undertaken.

Five matched cultures of C. elegans were grown in standard liquid

culture medium for 70 hr at 20uC, 200 rpm. Cultures were

exposed to 0, 1, 10, 100, 1000 ng/ml (0, 1.1 nM, 11.4 nM,

0.1 mM, 1.1 mM) IVM for 4 hr, harvested by sucrose flotation and

snap frozen in liquid nitrogen [26].

RNA methods
RNA extractions were carried out using Trizol Reagent

(Invitrogen, Paisley, UK), according to the manufacturer’s

instructions. Harvested C. elegans were homogenised in four

volumes Trizol reagent, subject to two chloroform extractions

and precipitated in isopropanol. The RNA was then treated with

RNase-free DNase I (Qiagen, Crawley, West Sussex, UK) in

solution before purification and concentration using RNeasy

columns (Qiagen, Crawley, West Sussex, UK). Quality and

concentration of RNA was assessed using an Agilent Bioanalyser

2100. Total RNA destined for microarray analysis was re-

precipitated in ethanol. RNA for real-time QPCR analysis was

reverse transcribed using a cloned AMV first strand synthesis kit

(Invitrogen, Paisley, UK) and random hexamer primers. 5 mg total

RNA for each sample was used as template and an identical

reaction lacking reverse transcriptase enzyme was carried out

simultaneously as a negative control. cDNA was purified using

PCR purification columns (Qiagen, Crawley, West Sussex, UK),

resuspended in 30 ml TE buffer and stored at 280uC until use.

Microarray hybridisation and analysis
Sample labelling and hybridisation to C. elegans whole genome

Genechips (Affymetrix, High Wycombe, UK) were performed

using standard Affymetrix protocols (http://media.affymetrix.

com/support/downloads/manuals/expression_analysis_techni-

cal_manual.pdf). These chips contain oligonucleotide probesets

designed to assess over 22500 transcripts from the C. elegans

genome. An updated annotation dataset was assembled for the C.

elegans probesets present on the Genechip. Data were sourced from

WormBase (Sept. 2008). Scanned array images (CEL files) were

quality control assessed using the arrayQualityMetrics Biocon-

ductor package (www.bioconductor.org) in the R environment

(www.r-project.org). Arrays identified as possible outliers were

removed from subsequent analyses. Linear model fitting of the

array data was undertaken, taking into account biological
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replicates using the limma (Linear Models for Microarray Data)

Bioconductor package (www.bioconductor.org/packages/bioc/

html/limma.html). The Rank Products algorithm was used to

assess differential expression of genes between test and control

groups and to assign significance to these changes [27].

Assignment of significance was carried out using a False Discovery

Rate (FDR) cut-off of 5–10%.

Gene Ontology analysis
DAVID software (the Database for Annotation, Visualisation

and Integrated Discovery) from the National Institutes of Health

was used to assess the functional annotation and clustering of the

differentially expressed genes [28,29]. Input into the program

consisted of probesets shown to be significantly altered in

expression using the Rank Products algorithm, with a false

discovery rate (FDR) of less than 10%. Prevalence of annotation

terms within the list of differentially expressed genes was compared

to the prevalence in the whole C. elegans genome. Fold enrichment

was calculated and a modified Fishers exact test (EASE score) used

to assign significance. Gene functional classification clustering was

carried out using medium stringency (DAVID).

Real-time Quantitative PCR
Relative quantitation of genes of interest was assessed using

Brilliant SYBR Green QPCR master mix (Agilent [Stratagene],

Stockport, Cheshire, UK) and a Stratagene Mx 300P QPCR

system with Stratagene MxPro software. ama-1, encoding a subunit

of RNA polymerase II, was used as a normalising gene. This

constitutively expressed gene showed no significant changes on

microarray analysis and has been extensively used as a normalising

gene in differential expression studies in C. elegans [30]. Gene

specific primers were designed to produce a product between 160

and 200 bp in length. The sequences of these primers can be

found in Table S1. The final concentration of primers was

between 300 nM and 400 nM in a total reaction volume of 25 ml.

Expression pattern analysis
GFP reporter constructs for mtl-1, scl-2, C23G10.11, cyp-37B1,

and ilys-3 were created using a PCR fusion protocol [31]. The

putative promoter region, 3 Kb upstream from the ATG start site

of the gene of interest, was fused to the gfp gene, including

synthetic introns and unc-54 39 UTR, from Fire vector pPD95.67

[32]. The plasmid used contained a gfp gene with a nuclear

localisation signal. Primer sequences can be found in Table S1.

Transgenic lines were created using the method of Mello et al.,

with the plasmid pRF-4 as a co-transformation marker to identify

transgenic worms [33]. Expression patterns were visualised using a

Zeiss, Axioscop 2 plus microscope. Images were collected and

processed using Improvision Openlab software (www.improvision.

com).

Results

Pharyngeal pumping rate of DA1316 is reduced
following exposure to IVM

Strain DA1316 is highly resistant to the effects of IVM on

motility. Although wild-type worms (N2) exposed to 100 ng/ml

(0.1 mM) IVM for as little as one hour exhibited a dramatic

paralysis phenotype, exposure of strain DA1316 to the same

concentration of drug for up to 6 hr had no visible effect on

motility, as has been previously described (data not shown). In

contrast, although the strain is resistant to the effects of IVM on

the pharynx relative to wild type worms, we found that four hours

exposure of DA1316 to IVM results in a significant decrease in

pharyngeal activity (Figure 1). The number of pharyngeal pumps

per minute is reduced by 50% following exposure to 100 ng/ml

(0.1 mM) IVM. The drug is thought to elicit its effect on the

pharynx via the AVR-15 subunit in pharyngeal GluCls [9,12].

However, avr-15 (vu227), presumed to be a null mutation of avr-15,

does not appear to confer complete resistance to the effect of IVM

on the C. elegans pharynx.

Acute exposure of DA1316 to 0.1 mM and 1.1 mM IVM
results in differential expression of a distinct set of genes
that may be involved in the response to food deprivation

Microarray analysis was performed on RNA from five biological

replicates of strain DA1316 exposed to 100 ng/ml (0.1 mM) IVM.

Twelve probesets were considered to be significantly up-regulated

and three considered to be significantly down-regulated

(FDR,5%). The top 10 up-regulated genes, based on log2 fold

change, are listed in Table 1. Many of the up-regulated genes are

uncharacterised, but those with known or putative functions may

have roles in fat metabolism. Given the low number of genes

showing significant changes in expression the experiment was

repeated using 1 mg/ml (1.1 mM) IVM in a similar manner. Again

five drug-exposed and five matched controls underwent analysis.

The rank products algorithm revealed 369 probesets to be

significantly altered in expression with a FDR correction to 5%

(216 up-regulated and 153 down-regulated). Figure 2 summarises

the microarray data and Table 2 lists the top 10 up-regulated and

down-regulated probesets based on log2 fold change. Full

microarray data is available in Table S2 and online at the

GEO website, accession number GSE22660. Many genes are

represented in the top up-regulated and down regulated lists for

both the 0.1 mM and 1.1 mM experiments, including the presence

of mtl-1, scl-2 and cyp-37B1 in the top four up-regulated genes,

which suggests there is a consistent response at the two doses of

drug.

Genes that showed significant changes in expression level

following exposure of strain DA1316 to 1 mg/ml (1.1 mM) IVM

(FDR,10%) were subject to ontology analysis. A less stringent

FDR cut-off was used to widen the scope of the analysis and

included 254 up-regulated and 186 down-regulated genes. The

gene ontology terms associated with a minimum of two genes and

with an associated EASE score (p-value) of #0.1, for both data

sets, are described (Table S3 and S4). Only 72 up-regulated and

94 down-regulated genes were associated with significantly

enriched ontology terms. This is likely due to the large number

of completely uncharacterised genes in both sub-categories.

Up-regulated terms include oxidoreductase activity, generation of

precursor metabolites and energy; metabolic process; organic acid metabolic

process; carboxylic acid metabolic process and catabolic process. These

terms are associated with several genes which may be important in

fatty acid synthesis, breakdown and metabolism including five

cytochrome P450 genes, two flavin containing monooxygenases

(FMO) and three catalase genes; two short chain dehydrogenase

genes and an alcohol dehydrogenase gene; a fatty acid desaturase

gene and a gamma butyrobetaine hydroxylase (potentially

involved in carnitine biosynthesis). The most significantly enriched

biological process ontology term is aging, which includes mtl-1, sodh-

1, cyp-34A9 and dod-3. In addition, this group contains other down-

stream targets of DAF-16, the sole C. elegans forkhead Box O

transcription factor homologue and a mediator of insulin signalling

[21,34]. These include catalase genes (ctl-2, ctl-1); a gut esterase

(ges-1); a fatty acid CoA synthetase gene (acs-17); a predicted

isocitrate lyase/malate synthase (gei-7); and an acylsphingosine

amidohydrolase (asah-1). All of these genes may be involved in fatty

acid metabolism pathways. Furthermore, the only KEGG

IVM Exposure Up-Regulates Nutrient Response Genes
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pathway term to be significantly enriched in the up-regulated gene

list was fatty acid metabolism. This was associated with five genes:

F54F3.4, acs-2, sodh-1, acs-17 and F58F9.7.

The down-regulated gene-list is significantly enriched for the

biological process term carboxylic acid metabolic process, which is

associated with the fatty acid desaturase genes fat-5, fat-6 and fat-7;

and several hypothetical proteins with acyl-CoA thioesterase, acyl-

CoA dehydrogenase, acyl-CoA oxidase, glycine dehydrogenase

KOGs. Additionally, the fatty acid elongase genes elo-2, elo-5 and

elo-6; and genes involved in lipid transport, including the

vitellogenins vit-1, vit-3 and vit-4, are down-regulated. Carbohydrate

metabolic processes, exemplified by the UDP-glucuronosyl transfer-

ases ugt-12, ugt-46; the lysozyme genes lys-5 and lys-6; gale-1 (a

putative UDP-galactose-4-epimerase) and ger-1 (a putative GDP-

keto-6-deoxymannose 3,5-epimerase/4-reductase) are also en-

riched in the down-regulated gene list. Further evidence that

IVM exposure does not result in a classical xenobiotic response is

seen by the significant down-regulation of the molecular function

terms catalytic activity, oxidoreductase and transferase activity. These

terms are associated with six UDP-glucuronosyl/glucosyl trans-

ferases, four glutathione-s-transferases, one cytochrome P450 and

one short-chain dehydrogenase; all of which represent gene

families that would be expected to be up-regulated in a xenobiotic

detoxification response.

The transcriptomic response to IVM exposure is inconsistent

with a general stress response: A panel of genes that have been

associated with stress, such as hsp-70, gst-1, gst-38, sip-1 and HSF-1,

show no significant change in expression in the microarray

experiments; and others such as hsp-16.1, hsp-16.49 and gst-4 are in

fact significantly down-regulated in the current study (Table S5).

Instead, the overall analysis suggests that the predominant

response is associated with an increase in lipid catabolism. We

hypothesised that this was likely to be a result of short-term food

deprivation associated with the reduced pharyngeal pumping, and

hence feeding, which occurs following exposure of the DA1316

strain to IVM. In order to investigate this hypothesis further we

Figure 1. Pharyngeal pumping rate following 4 hr exposure of DA1316 and N2 to 0–1000 ng/ml (1.14 mM) IVM. Whilst strain DA1316 is
more resistant to IVM induced pharyngeal paralysis, at concentrations greater than 100 ng/ml (0.1 mM) the pharyngeal pumping rate is significantly
reduced. The pharyngeal pumping rates of five worms were counted at each concentration of IVM and the error bars represent the standard
deviation.
doi:10.1371/journal.pone.0031367.g001

Table 1. Top 10 up-regulated probesets based on fold change following 4 hr exposure of DA1316 to 100 ng/ml (0.1 mM) IVM.

Probeset Gene ID Log2 FC FDR Ontology

172744_at mtl-1 1.59 0 metallothionein

184913_s_at T22F3.11 1.44 0 permease of major facilitator family KOG

192737_at scl-2 1.31 0 sterol carrier-like protein

189221_at cyp-37B1 1.27 0 cytochrome P450 (CYP4/19/26 subfamilies)

186971_at C23G10.11 1.23 0 uncharacterised

173729_at T22F3.11 1.21 0 permease of major facilitator family KOG

183381_at C50F7.5 1.12 1.00E-02 uncharacterised

186521_at F21C10.10 1.10 1.11E-02 uncharacterised

173550_at F45D3.4 1.08 1.25E-02 uncharacterised

190978_at sodh-1 1.07 1.82E-02 alcohol dehydrogenase class V KOG

doi:10.1371/journal.pone.0031367.t001

IVM Exposure Up-Regulates Nutrient Response Genes
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Table 2. Top 10 up-regulated and down-regulated genes based on fold change following 4 hr exposure of DA1316 to 1 mg/ml
(1.1 mM) IVM.

UP-REGULATED GENES

Probeset Gene ID Log2 FC FDR Ontology

172744_at mtl-1 4.99 0 metallothionein

192737_at scl-2 3.27 0 sterol carrier-like protein

186971_at C23G10.11 3.20 0 uncharacterised

189221_at cyp-37B1 3.09 0 cytochrome P450 (CYP4/19/26 subfamilies)

177613_at F57G8.7 3.01 0 uncharacterised

177671_at K03D3.2 2.83 0 uncharacterised

178900_s_at F45D3.4 2.77 0 uncharacterised

187964_at F54F3.3 2.51 0 triglyceride lipase-cholesterol esterase KOG

180946_at ilys-3 2.51 0 invertebrate lysozyme

173335_s_at dod-3 2.33 0 down stream of daf-16

DOWN-REGULATED GENES

176939_at spp-23 22.79 0 saposin-like protein family

190404_s_at folt-2 22.55 0 putative folate transporter

179187_s_at F46F2.3 22.36 0 uncharacterised

189345_at pho-13 21.88 0 predicted intestinal acid phosphatase

192528_at C35A5.3 21.83 0 uncharacterised

187085_s_at gst-10 21.77 0 glutathione-s-transferase

190744_at ugt-63 21.77 0 UDP-glucuronosyl/glucosyl transferase KOG

175489_at F18E3.11 21.72 0 uncharacterised

177747_at F58G6.9| srm-3 21.72 0 uncharacterised

188441_at F21F8.4 21.70 0 KOG- aspartyl protease

doi:10.1371/journal.pone.0031367.t002

Figure 2. Model fitted log2 control chip intensity vs. log2 IVM (1 mg/ml, 1.1 mM) chip intensity. The scatter plot represents the entire
22625 probesets represented on the Affymetrix chips. The upper and lower dashed lines represent up-regulation greater than 2-fold and down-
regulation greater than 2-fold respectively. The data points marked A-H represent the top 10 up-regulated genes in Table 2.
doi:10.1371/journal.pone.0031367.g002
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compared our data to that of Van Gilst (2005) who identified 18

genes whose expression was significantly influenced by food

withdrawal, using a quantitative real-time PCR screen of 97

candidate genes (Figure 3) [24]. The majority of the 18 genes

identified by Van Gilst et al. as fasting response genes were

similarly differentially expressed in microarray analysis of DA1316

exposed to IVM. This supports the hypothesis that the

predominant response to IVM was secondary to its effect on the

nematode pharynx. cpt-4 was the only gene whose regulation was

discordant, being up-regulated in response to IVM exposure and

down- regulated in response to fasting. However, this gene is

thought to encode a carnitine palmitoyl transferase, which would

be expected to be up-regulated with increased fat catabolism.

Real-time QPCR confirmation of microarray data
Genes which showed the greatest fold up-regulation following

IVM exposure in the microarray experiments were further assessed

using real- time QPCR. All of the genes examined that were

proposed to be up-regulated by the microarray experiments were

confirmed to be up-regulated by this technique (Figure 4). sip-1, gst-1

and HSF-1 are genes that have been associated general stress

responses. These were included in the RT-QPCR analysis as negative

controls and none showed any evidence of induction, supporting the

earlier conclusion of a lack of a generalised stress response to IVM

exposure. Expression of cyp-35C1, which we have shown to be up-

regulated in response to albendazole exposure, was unchanged

following IVM exposure [27]. In addition, pgp-1, an example of the p-

glycoproteins that have been advocated to be responsive to chronic

IVM exposure, showed no change in expression [35].

cyp-37B1, mtl-1 and scl-2 represent novel genes involved
in the response to food deprivation

cyp-37B1, mtl-1 and scl-2 were in the top four induced genes for

both the 100 ng/ml (0.1 mM) and 1 mg/ml (1.1 mM) microarray

experiments and their high level of induction was confirmed by

RT-PCR. Additionally, both cyp-37B1 and mtl-1 have previously

been shown to be responsive to exposure to other xenobiotics

including clofibrate, b-naphthoflavone, PCB52, fluoranthene,

progesterone and oestrogen [36–38]. Therefore, these genes were

examined in more detail to characterize their response to both

IVM exposure and food withdrawal.

First, the dose responsiveness of cyp-37B1, scl-2 and mtl-1 was

examined to relate the effects to those seen on the pharyngeal

paralysis phenotype (Figure 5A). All respond to IVM in a dose

responsive manner, with significant changes occurring in gene

expression at doses of IVM greater than 10 ng/ml (11.4 nM). This

is consistent with the drug concentration at which IVM begins to

affect the pharynx of DA1316 (Figure 1). The induction of

expression of these three genes following nutritional deprivation

(food removal) for 4 hr was examined and all were found to be up-

regulated (Figure 5B). Furthermore, the level of induction was

very similar to that produced by a 4 hr exposure to 1 mg/ml

(1.1 mM) of IVM, a concentration that results in almost complete

pharyngeal paralysis in DA1316. cyp-35C1, included as a negative

Figure 3. Differential expression of 18 fasting response genes*, in the 1 mg/ml (1.1 mM) IVM exposure microarray experiment. In
general genes that were shown to be induced by fasting were also induced following exposure to IVM and fasting repressed genes were also
repressed by IVM exposure. *Taken from van Gilst et al. 2005 [24].
doi:10.1371/journal.pone.0031367.g003
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control, shows no change in either of the conditions examined in

the current study.

IVM responsive genes are predominantly expressed in
the intestine and hypodermis

The expression patterns of a number of the induced genes were

investigated. GFP transgenes of mtl-1, cyp-37B1 and scl-2 and ilys-3

showed GFP expression in the intestinal cells (Figure 6), which is

an important site for fat storage [39]. Additionally, mtl-1 showed

expression in the terminal bulb of the pharynx (Figure 6), as has

been reported previously [39,41]. In addition to the intestinal cells,

the transcriptional reporter for cyp-37B1 showed expression in two

cells in the tail region, which were assumed to be the phasmid

neurons. These are proposed to be chemosensory neurons

involved in avoidance of noxious chemical stimuli [42].

C23G10.11 was expressed in the hypodermal cells, which are

also proposed to be a site of fat storage [43].

Discussion

The transcriptional response of C. elegans strain DA1316
exposed to IVM is dominated by genes associated with
fat mobilization and fatty acid metabolism

The transcriptional response of the C. elegans strain DA1316 (avr-

14(ad1302); avr-15(vu227); glc-1(pk54)) to IVM appears to be

dominated by genes associated with the consequences of food

deprivation, such as changes to fatty acid metabolism, many of

which are conserved in higher mammals. Comparative analysis of

our results with those of Van Gilst et al. (2005), provide compelling

evidence for this (Figure 3) [24]. Furthermore we have directly

demonstrated that the three genes most consistently induced by

IVM exposure in our experiments (mtl-1, cyp-37B1 and scl-2) are in

fact directly inducible by food withdrawal in the absence of the

drug. This conclusion is supported by the phenotype of the

DA1316 strain when exposed to IVM. Although this strain, which

has null mutations in three glutamate-gate chloride channels (avr-

14, avr-15 and glc-1), is highly resistant to the paralytic effects of the

drug on body wall muscle, we found it was still sensitive (albeit less

than wild type) to IVM induced pharyngeal paralysis (Figure 1).

At doses of IVM of 100 ng/ml (0.1 mM) reduced pharyngeal

pumping was evident with almost complete paralysis at 1 mg/ml

(1.1 mM) (Figure 1). Hence the major effect of IVM on the

DA1316 worms is likely to be a reduction in food intake. It should

be noted that, in contrast, Ardelli et al. (2009) reported that an avr-

14, avr-15 and glc-1 triple mutant showed no reduction in

pharyngeal activity following 2.5 hr exposure to IVM at

concentrations of up to 5 mM [44]. It may be that the longer

period of exposure, 4 hr in the current study compared to 2.5 hr

in that of Ardelli et al., explains these differences.

We did not specifically investigate the effects of IVM-induced

reduction of pharyngeal pumping rate on worm development and

growth. However, it is interesting to note that DA1316 larvae

grown on NGM containing IVM took longer to reach adulthood

compared with those grown on drug-free plates; even at IVM

doses as low as 11.4 nM (data not shown). At present, the extent to

which the transcriptional response described here leads to

metabolic changes that functionally compensate for reduced feed

intake is not clear, and this will be an interesting area of future

investigation.

These results also provide an interesting example of the care

that needs to be taken when interpreting the transcriptional

responses to drug exposure. At first sight some of the induced

genes could be interpreted as being part of a specific xenobiotic

response to IVM exposure, and perhaps represent candidate

enzymes that may metabolize the drug. The cytochrome P450

gene cyp-37B1 might be taken to be such a candidate. However,

cytochromes P450 have roles in many constitutive biological

processes in addition to drug metabolism, and in this case our

results are more likely to implicate this enzyme in endogenous fatty

acid metabolism rather than xenobiotic metabolism.

Identification of novel genes induced in an early
response to food deprivation

C. elegans has been established in the literature as a model for the

investigation of fat metabolism and obesity [20,21]. Whilst there is

a huge amount of information regarding the medium and long

term effects of food withdrawal on C. elegans and the induction of

the dauer stage, little is known about the response of the worm to

Figure 4. RTPCR assessment of gene expression following 4 hr exposure to IVM. Strain DA1316 was exposed to 1 mg/ml [1.1 mM] IVM
(Virbamec) for 4 hr. Results are expressed as fold change relative to an unexposed control. Biological replicates were carried out in triplicate and the
error bars represent the standard error. All genes proposed to be up-regulated by microarray were confirmed by RT-QPCR.
doi:10.1371/journal.pone.0031367.g004
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the earliest effects of food withdrawal. The identification of genes

that are induced by short-term food deprivation was an

unanticipated result of this study that is nevertheless potentially

important. We have confirmed three of the genes (mtl-1, cyp-37B1

and scl-2) induced by IVM exposure are truly induced by food

withdrawal. Many of the other induced genes, most of which have

not been ascribed a functional annotation, are likely to also be

novel early fasting response/fat metabolism genes. An investiga-

tion of this and their role in these processes will be an interesting

area of future study and may be relevant to fat mobilization and

the molecular response to food deprivation in mammals.

mtl-1, cyp-37B1 and scl-2 have not been previously implicated in

fasting responses or fat metabolism in C. elegans and so it is

interesting to speculate on their roles in these processes. mtl-1 is a

metallothionein gene, which is inducible in response to heavy

metal intoxication and stress adaptation [40]. Both rat and mouse

mtl genes have been shown to be induced following fasting and

may act as an antioxidant in the mouse [45–47]. However,

metallothioneins have also been proposed to be involved in zinc

signalling pathways within mammalian cells [48]. The C. elegans

mtl-1 gene is significantly divergent from the mammalian genes. In

fact, Ce-mtl-1 is the largest known metallothionein gene thus far

investigated and therefore the function of MTL-1 may also be

divergent in this species [40]. Interestingly, mtl-1 has been noted to

be up-regulated in response to several xenobiotics including

progesterone, clofibrate and b-naphthoflavone and was also up-

Figure 5. Up-regulation of cyp-37B1, mtl-1 and scl-2 in response to varying concentrations of IVM and fasting. A. Up-regulation of the
genes of interest appears to occur in a dose-dependent manner. Biological replicates were carried out in duplicate and the error bars represent the
standard error. B. There are no significant differences in the fold up-regulation of the genes investigated following exposure to 1 mg/ml (1.1 mM) IVM
and 4 hr fasting. cyp-35C1 (a gene transcriptionally induced by benzimidazole drug exposure [18]), included as a control, was unaffected by either
treatment.
doi:10.1371/journal.pone.0031367.g005
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regulated in nematodes grown in axenic culture [36,38,49]. The

phenotype of worms exposed to these xenobiotics was not reported

in the literature. However, it seems likely that induction of mtl-1

occurs under many different circumstances and may represent

part of a common signalling pathway rather than an effector

protein in the response to xenobiotic intoxication or food

withdrawal.

The mtl-1 transcriptional GFP reporter construct showed

constitutive expression in the intestine. Previous reported studies

have suggested that whilst mtl-1 can be induced in the gut,

constitutive expression is only found in the posterior bulb of the

pharynx [41]. This would also suggest that mtl-1 expression is

higher in strain DA1316 than wild-type worms. The reason for

this may be due to a level of pharyngeal dysfunction noted in

glutamate-gated chloride channel subunit mutants, also noted in

the slightly lower resting pharyngeal pumping rate of this strain

(Figure 1) [10]. Hypothetically, this could result in slightly

decreased food intake and a chronic up-regulation of the pathways

involved in this response.

There have been no citations for scl-2 in the literature and its

function remains largely unknown. However, the gene encodes a

sterol carrier-like protein domain and may potentially be involved

in the transport of steroid hormones or lipid breakdown products.

Up-regulation of a gene involved in such processes during food

deprivation would be expected. Expression of scl-2 appears to be

confined to the intestinal cells at all stages. The intestinal cells

represent a major site of fat storage in the nematodes [39].

Therefore, the localised expression of scl-2 in the intestine makes it

ideally placed for involvement in fat mobilization.

cyp-37B1 represents a cytochrome P450 gene which encodes a

CYP4/CYP19/CYP26 domain. Again, this gene has been shown

to be up-regulated in response to other xenobiotics, but the

phenotype of the exposed worms was not reported [36–38].

BLASTp analysis reveals that isoform 1 of CYP4V2 is a

homologue of C. elegans CYP37B1 in the Homo sapiens genome

(BLAST E-value 7.9610298, 90.6% length). Mutations of the gene

encoding CYP4V2 have been associated with Bietti Crystalline

Corneoretinal Dystrophy and the protein has recently been

characterised as a fatty acid {omega}-hydroxylase [50,51]. cyp-

37B1(RNAi) suggests that this gene may have limited hydroxylase

activity against eicosapentaenoic acid in C. elegans [52]. Therefore,

it is possible that this cytochrome P450 is also involved in fat

mobilisation in response to food deprivation. The expression of

this gene in the intestine of the nematodes corroborates this

hypothesis. However, there was also expression in the phasmid

neurons, which may suggest involvement in chemosensation.

Certainly, C. elegans appear to be able to sense IVM in their

environment. Both wild-type (N2) and DA1316 animals will

attempt to migrate off IVM containing NGM plates at

concentrations of drug not high enough to cause immediate

paralysis (data not shown).

Our initial hypothesis, that exposure of C. elegans to IVM would

result in the up-regulation of xenobiotic metabolising enzymes, has

been largely disproved in the current study. However, the

pharyngeal dysfunction and associated decreased food intake

caused by IVM, even in a highly resistant strain such as DA1316,

has resulted in the identification of genes not previously implicated

in food deprivation. Further investigation into the function of these

Figure 6. GFP expression patterns of IVM responsive genes. mtl-1, scl-2, cyp-37B1 and ilys-3 are expressed in the intestine and C23G10.11 is
expressed in the hypodermal cells. These are both proposed sites of fat storage.
doi:10.1371/journal.pone.0031367.g006
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genes should provide insight into the molecular pathways involved

in reduced food intake, fasting and fat mobilization, both in

nematodes and in higher species. Additionally, the recognition that

IVM still induces a degree of pharyngeal paralysis in a mutant

carrying null mutations in three glutamate-gated chloride channel

subunits (avr-14, avr-15 and glc-1) suggests the existence of

additional targets of the drug that are involved in nematode

pharyngeal function.

Supporting Information

Table S1 Primer sets for real-time QPCR and GFP-
fusion constructs.
(XLS)

Table S2 Complete list of genes with significant chang-
es in expression following IVM exposure. Log fold change

in expression of all genes with a false discovery rate of less than 5%

in both the 100 ng/ml (0.1 mM) and 1 mg/ml (1.1 mM) IVM

experiments are listed.

(XLS)

Table S3 Ontology terms associated with up-regulated
genes in response to exposure of DA1316 to 1 mg/ml
(1.1 mM) IVM for 4 hr.

(XLSX)

Table S4 Ontology terms associated with down-regu-
lated genes in response to exposure of DA1316 to 1 mg/
ml (1.1 mM) IVM for 4 hr.

(XLSX)

Table S5 Log fold change in expression of ‘‘classic’’
stress response genes following IVM exposure (1 mg/ml,
1.1 mM).

(XLS)

Author Contributions

Conceived and designed the experiments: SL JG. Performed the

experiments: SL VB SR. Analyzed the data: SL AI RL JG. Wrote the

paper: SL. Drug experiments: SL. RNA methods: SL. RT-QPCR: SL.

Microarray hybridization and normalization: AI. GFP reporters: SL VB

SR. Supervision and critical reading of the manuscript: DW JG.

References

1. Fox LM (2006) Ivermectin: uses and impact 20 years on. Curr Opin Infect Dis
19: 588–593. 10.1097/QCO.0b013e328010774c [doi];00001432-200612000-

00011 [pii].

2. Gilleard JS (2006) Understanding anthelmintic resistance: the need for genomics
and genetics. Int J Parasitol 36: 1227–1239.

3. Edward CL, Hoffmann AA (2008) Ivermectin resistance in a horse in Australia.

Vet Rec 162: 56–57. 162/2/56 [pii].

4. Kaplan RM (2004) Drug resistance in nematodes of veterinary importance: a

status report. Trends Parasitol 20: 477–481.

5. Sargison ND, Jackson F, Bartley DJ, Wilson DJ, Stenhouse LJ, et al. (2007)
Observations on the emergence of multiple anthelmintic resistance in sheep

flocks in the south-east of Scotland. Vet Parasitol 145: 65–76. S0304-
4017(06)00621-2 [pii];10.1016/j.vetpar.2006.10.024 [doi].

6. Awadzi K, Boakye DA, Edwards G, Opoku NO, Attah SK, et al. (2004) An

investigation of persistent microfilaridermias despite multiple treatments with

ivermectin, in two onchocerciasis-endemic foci in Ghana. Ann Trop Med
Parasitol 98: 231–249. 10.1179/000349804225003253 [doi].

7. Churcher TS, Pion SD, Osei-Atweneboana MY, Prichard RK, Awadzi K, et al.

(2009) Identifying sub-optimal responses to ivermectin in the treatment of River
Blindness. Proc Natl Acad Sci U S A 106: 16716–16721. 0906176106

[pii];10.1073/pnas.0906176106 [doi].

8. Osei-Atweneboana MY, Eng JK, Boakye DA, Gyapong JO, Prichard RK (2007)

Prevalence and intensity of Onchocerca volvulus infection and efficacy of
ivermectin in endemic communities in Ghana: a two-phase epidemiological

study. Lancet 369: 2021–2029. S0140-6736(07)60942-8 [pii];10.1016/S0140-
6736(07)60942-8 [doi].

9. Dent JA, Davis MW, Avery L (1997) avr-15 encodes a chloride channel subunit

that mediates inhibitory glutamatergic neurotransmission and ivermectin
sensitivity in Caenorhabditis elegans. EMBO J 16: 5867–5879. 10.1093/

emboj/16.19.5867 [doi].

10. Dent JA, Smith MM, Vassilatis DK, Avery L (2000) The genetics of ivermectin

resistance in Caenorhabditis elegans. Proc Natl Acad Sci U S A 97: 2674–2679.

11. Etter A, Cully DF, Schaeffer JM, Liu KK, Arena JP (1996) An amino acid
substitution in the pore region of a glutamate-gated chloride channel enables the

coupling of ligand binding to channel gating. J Biol Chem 271: 16035–16039.

12. Pemberton DJ, Franks CJ, Walker RJ, Holden-Dye L (2001) Characterization of
glutamate-gated chloride channels in the pharynx of wild-type and mutant

Caenorhabditis elegans delineates the role of the subunit GluCl-alpha2 in the

function of the native receptor. Mol Pharmacol 59: 1037–1043.

13. Vassilatis DK, Arena JP, Plasterk RH, Wilkinson HA, Schaeffer JM, et al. (1997)
Genetic and biochemical evidence for a novel avermectin-sensitive chloride

channel in Caenorhabditis elegans. Isolation and characterization. J Biol Chem
272: 33167–33174.

14. Yates DM, Portillo V, Wolstenholme AJ (2003) The avermectin receptors of

Haemonchus contortus and Caenorhabditis elegans. Int J Parasitol 33:
1183–1193.

15. Holden-Dye L, Walker RJ (2006) Actions of glutamate and ivermectin on the

pharyngeal muscle of Ascaridia galli: a comparative study with Caenorhabditis

elegans. Int J Parasitol 36: 395–402.

16. Brownlee DJ, Holden-Dye L, Walker RJ (1997) Actions of the anthelmintic
ivermectin on the pharyngeal muscle of the parasitic nematode, Ascaris suum.

Parasitology 115(Pt 5): 553–561.

17. McCavera S, Rogers AT, Yates DM, Woods DJ, Wolstenholme AJ (2009) An
ivermectin-sensitive glutamate-gated chloride channel from the parasitic

nematode Haemonchus contortus. Mol Pharmacol 75: 1347–1355.

mol.108.053363 [pii];10.1124/mol.108.053363 [doi].

18. Laing ST, Ivens A, Laing R, Ravikumar S, Butler V, et al. (2010)

Characterization of the xenobiotic response of Caenorhabditis elegans to the

anthelmintic drug albendazole and the identification of novel drug glucoside

metabolites. Biochem J 432: 505–514. BJ20101346 [pii];10.1042/BJ20101346

[doi].

19. Gonzalez CA, Sahagun Prieto AM, Jose Diez LM, Martinez NF, Vega MS,

et al. (2009) The pharmacokinetics and metabolism of ivermectin in domestic

animal species. Vet J 179: 25–37. S1090-0233(07)00249-3 [pii];10.1016/

j.tvjl.2007.07.011 [doi].

20. Jones KT, Ashrafi K (2009) Caenorhabditis elegans as an emerging model for

studying the basic biology of obesity. Dis Model Mech 2: 224–229. 2/5-6/224

[pii];10.1242/dmm.001933 [doi].

21. Zheng J, Greenway FL (2011) Caenorhabditis elegans as a model for obesity

research. Int J Obes (Lond). ijo201193 [pii];10.1038/ijo.2011.93 [doi].

22. Jeong PY, Kwon MS, Joo HJ, Paik YK (2009) Molecular time-course and the

metabolic basis of entry into dauer in Caenorhabditis elegans. PLoS One 4:

e4162. 10.1371/journal.pone.0004162 [doi].

23. Wang J, Kim SK (2003) Global analysis of dauer gene expression in

Caenorhabditis elegans. Development 130: 1621–1634.

24. Van Gilst MR, Hadjivassiliou H, Yamamoto KR (2005) A Caenorhabditis

elegans nutrient response system partially dependent on nuclear receptor NHR-

49. Proc Natl Acad Sci U S A 102: 13496–13501.

25. Stiernagle T (1999) Maintenance of C. elegans. In: Hope IA, ed. C.

elegans A Practical Approach. Oxford: Oxford University Press. pp 51–67.

26. Johnstone IA (1999) Molecular Biology. In: Hope IA, ed. C. elegans A Practical

Approach Oxford University Press. pp 201–225.

27. Breitling R, Armengaud P, Amtmann A, Herzyk P (2004) Rank products: a

simple, yet powerful, new method to detect differentially regulated genes in

replicated microarray experiments. FEBS Lett 573: 83–92. 10.1016/j.febs-

let.2004.07.055 [doi];S0014579304009354 [pii].

28. Dennis G Jr., Sherman BT, Hosack DA, Yang J, Gao W, et al. (2003) DAVID:

Database for Annotation, Visualization, and Integrated Discovery. Genome Biol

4: 3.

29. Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative

analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:

44–57. nprot.2008.211 [pii];10.1038/nprot.2008.211 [doi].

30. Jonstone IL, Barry JD (1996) Temporal reiteration if a precise gene expression

pattern during nematode development. EMBO J 15: 3633–3639.

31. Hobert O (2002) PCR fusion-based approach to create reporter gene constructs

for expression analysis in transgenic C. elegans. Biotechniques 32: 728–730.

32. Fire A, Harrison SW, Dixon D (1990) A modular set of lacZ fusion vectors for

studying gene expression in Caenorhabditis elegans. Gene 93: 189–198.

33. Mello CC, Kramer JM, Stinchcomb D, Ambros V (1991) Efficient gene transfer

in C.elegans: extrachromosomal maintenance and integration of transforming

sequences. EMBO J 10: 3959–3970.

34. Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G (1997) daf-2, an insulin

receptor-like gene that regulates longevity and diapause in Caenorhabditis

elegans. Science 277: 942–946.

35. James CE, Davey MW (2009) Increased expression of ABC transport proteins is

associated with ivermectin resistance in the model nematode Caenorhabditis

elegans. Int J Parasitol 39(2): 213–20.

IVM Exposure Up-Regulates Nutrient Response Genes

PLoS ONE | www.plosone.org 10 February 2012 | Volume 7 | Issue 2 | e31367



36. Custodia N, Won SJ, Novillo A, Wieland M, Li C, et al. (2001) Caenorhabditis

elegans as an environmental monitor using DNA microarray analysis.
Ann N Y Acad Sci 948: 32–42.

37. Menzel R, Yeo HL, Rienau S, Li S, Steinberg CE, et al. (2007) Cytochrome

P450s and short-chain dehydrogenases mediate the toxicogenomic response of
PCB52 in the nematode Caenorhabditis elegans. J Mol Biol 370: 1–13.

38. Reichert K, Menzel R (2005) Expression profiling of five different xenobiotics using
a Caenorhabditis elegans whole genome microarray. Chemosphere 61: 229–237.

39. Mullaney BC, Ashrafi K (2009) C. elegans fat storage and metabolic regulation.

Biochim Biophys Acta 1791: 474–478. S1388-1981(08)00241-2 [pii];10.1016/
j.bbalip.2008.12.013 [doi].

40. Cui Y, McBride SJ, Boyd WA, Alper S, Freedman JH (2007) Toxicogenomic
analysis of Caenorhabditis elegans reveals novel genes and pathways involved in

the resistance to cadmium toxicity. Genome Biol 8: R122.
41. Freedman JH, Slice LW, Dixon D, Fire A, Rubin CS (1993) The novel

metallothionein genes of Caenorhabditis elegans. Structural organization and

inducible, cell-specific expression. J Biol Chem 268: 2554–2564.
42. Bargmann CI (2006) Chemosensation in C. elegans. WormBook. pp 1–29.

10.1895/wormbook.1.123.1 [doi].
43. Ashrafi K (2007) Obesity and the regulation of fat metabolism. WormBook. pp

1–20. 10.1895/wormbook.1.130.1 [doi].

44. Ardelli BF, Stitt LE, Tompkins JB, Prichard RK (2009) A comparison of the
effects of ivermectin and moxidectin on the nematode Caenorhabditis elegans.

Vet Parasitol;S0304-4017(09)00379-3 [pii];10.1016/j.vetpar.2009.06.043 [doi].
45. Kondoh M, Kamada K, Kuronaga M, Higashimoto M, Takiguchi M, et al.

(2003) Antioxidant property of metallothionein in fasted mice. Toxicol Lett 143:
301–306. S0378427403001954 [pii].

46. Shinogi M, Sakaridani M, Yokoyama I (1999) Metallothionein induction in rat

liver by dietary restriction or exercise and reduction of exercise-induced hepatic

lipid peroxidation. Biol Pharm Bull 22: 132–136.

47. Sogawa N, Sogawa CA, Fukuoka H, Mukubo Y, Yoneyama T, et al. (2003) The

changes of hepatic metallothionein synthesis and the hepatic damage induced by

starvation in mice. Methods Find Exp Clin Pharmacol 25: 601–606. 778079

[pii].

48. Cousins RJ, Liuzzi JP, Lichten LA (2006) Mammalian zinc transport, trafficking,

and signals. J Biol Chem 281: 24085–24089. R600011200 [pii];10.1074/

jbc.R600011200 [doi].

49. Szewczyk NJ, Udranszky IA, Kozak E, Sunga J, Kim SK, et al. (2006) Delayed

development and lifespan extension as features of metabolic lifestyle alteration in

C. elegans under dietary restriction. J Exp Biol 209: 4129–4139. 209/20/4129

[pii];10.1242/jeb.02492 [doi].

50. Li A, Jiao X, Munier FL, Schorderet DF, Yao W, et al. (2004) Bietti crystalline

corneoretinal dystrophy is caused by mutations in the novel gene CYP4V2.

Am J Hum Genet 74: 817–826. 10.1086/383228 [doi];S0002-9297(07)64351-1

[pii].

51. Nakano M, Kelly EJ, Rettie AE (2009) Expression and Characterization of

CYP4V2 as a Fatty Acid {omega}-Hydroxylase. Drug Metab Dis-

pos;dmd.109.028530 [pii];10.1124/dmd.109.028530 [doi].

52. Kulas J, Schmidt C, Rothe M, Menzel R (2008) Cytochrome P450-dependent

metabolism of eicosapentaenoic acid in the nematode Caenorhabditis elegans.

Arch Biochem Biophys 472(1): 65–75.

IVM Exposure Up-Regulates Nutrient Response Genes

PLoS ONE | www.plosone.org 11 February 2012 | Volume 7 | Issue 2 | e31367


	CoversheetEnlighten.pdf
	http://eprints.gla.ac.uk/65483/


