1,061 research outputs found
Multimode Fock states with large photon number: effective descriptions and applications in quantum metrology
We develop general tools to characterise and efficiently compute relevant
observables of multimode -photon states generated in non-linear decays in
one-dimensional waveguides. We then consider optical interferometry in a
Mach-Zender interferometer where a -mode photonic state enters in each arm
of the interferometer. We derive a simple expression for the Quantum Fisher
Information in terms of the average photon number in each mode, and show that
it can be saturated by number-resolved photon measurements that do not
distinguish between the different modes.Comment: 18 pages, 11 figures. V2: Minor change
Work and entropy production in generalised Gibbs ensembles
Recent years have seen an enormously revived interest in the study of
thermodynamic notions in the quantum regime. This applies both to the study of
notions of work extraction in thermal machines in the quantum regime, as well
as to questions of equilibration and thermalisation of interacting quantum
many-body systems as such. In this work we bring together these two lines of
research by studying work extraction in a closed system that undergoes a
sequence of quenches and equilibration steps concomitant with free evolutions.
In this way, we incorporate an important insight from the study of the dynamics
of quantum many body systems: the evolution of closed systems is expected to be
well described, for relevant observables and most times, by a suitable
equilibrium state. We will consider three kinds of equilibration, namely to (i)
the time averaged state, (ii) the Gibbs ensemble and (iii) the generalised
Gibbs ensemble (GGE), reflecting further constants of motion in integrable
models. For each effective description, we investigate notions of entropy
production, the validity of the minimal work principle and properties of
optimal work extraction protocols. While we keep the discussion general, much
room is dedicated to the discussion of paradigmatic non-interacting fermionic
quantum many-body systems, for which we identify significant differences with
respect to the role of the minimal work principle. Our work not only has
implications for experiments with cold atoms, but also can be viewed as
suggesting a mindset for quantum thermodynamics where the role of the external
heat baths is instead played by the system itself, with its internal degrees of
freedom bringing coarse-grained observables to equilibrium.Comment: 22 pages, 4 figures, improvements in presentatio
Strong coupling corrections in quantum thermodynamics
Quantum systems strongly coupled to many-body systems equilibrate to the
reduced state of a global thermal state, deviating from the local thermal state
of the system as it occurs in the weak-coupling limit. Taking this insight as a
starting point, we study the thermodynamics of systems strongly coupled to
thermal baths. First, we provide strong-coupling corrections to the second law
applicable to general systems in three of its different readings: As a
statement of maximal extractable work, on heat dissipation, and bound to the
Carnot efficiency. These corrections become relevant for small quantum systems
and always vanish in first order in the interaction strength. We then move to
the question of power of heat engines, obtaining a bound on the power
enhancement due to strong coupling. Our results are exemplified on the
paradigmatic situation of non-Markovian quantum Brownian motion.Comment: 20 pages, 3 figures, version two is substantially revised and
contains new result
- …