381 research outputs found
When Anomaly Mediation is UV Sensitive
Despite its successes---such as solving the supersymmetric flavor
problem---anomaly mediated supersymmetry breaking is untenable because of its
prediction of tachyonic sleptons. An appealing solution to this problem was
proposed by Pomarol and Rattazzi where a threshold controlled by a light field
deflects the anomaly mediated supersymmetry breaking trajectory, thus evading
tachyonic sleptons. In this paper we examine an alternate class of deflection
models where the non-supersymmetric threshold is accompanied by a heavy,
instead of light, singlet. The low energy form of this model is the so-called
extended anomaly mediation proposed by Nelson and Weiner, but with potential
for a much higher deflection threshold. The existence of this high deflection
threshold implies that the space of anomaly mediated supersymmetry breaking
deflecting models is larger than previously thought.Comment: 14 pages, 1 figure (version to appear in JHEP
Soft branes in supersymmetry-breaking backgrounds
We revisit the analysis of effective field theories resulting from
non-supersymmetric perturbations to supersymmetric flux compactifications of
the type-IIB superstring with an eye towards those resulting from the
backreaction of a small number of anti-D3-branes. Independently of the
background, we show that the low-energy Lagrangian describing the fluctuations
of a stack of probe D3-branes exhibits soft supersymmetry breaking, despite
perturbations to marginal operators that were not fully considered in some
previous treatments. We take this as an indication that the breaking of
supersymmetry by anti-D3-branes or other sources may be spontaneous rather than
explicit. In support of this, we consider the action of an anti-D3-brane
probing an otherwise supersymmetric configuration and identify a candidate for
the corresponding goldstino.Comment: 36+5 pages. References added, minor typos correcte
Spontaneous R-Parity Violation, Flavor Symmetry and Tribimaximal Mixing
We explore the possibility of spontaneous R parity violation in the context
of  flavor symmetry. Our model contains  singlet matter chiral superfields which are arranged as triplet of
 and as well as few additional Higgs chiral superfields which are singlet
under MSSM gauge group and belong to triplet and singlet representation under
the  flavor symmetry. R parity is broken spontaneously by the vacuum
expectation values of the different sneutrino fields and hence we have
neutrino-neutralino as well as neutrino-MSSM gauge singlet higgsino mixings in
our model, in addition to the standard model neutrino- gauge singlet neutrino,
gaugino-higgsino and higgsino-higgsino mixings. Because all of these mixings we
have an extended neutral fermion mass matrix. We explore the low energy
neutrino mass matrix for our model and point out that with some specific
constraints between the sneutrino vacuum expectation values as well as the MSSM
gauge singlet Higgs vacuum expectation values, the low energy neutrino mass
matrix will lead to a tribimaximal mixing matrix. We also analyze the potential
minimization for our model and show that one can realize a higher vacuum
expectation value of the  singlet
sneutrino fields even when the other sneutrino vacuum expectation values are
extremely small or even zero.Comment: 18 page
Flavor of quiver-like realizations of effective supersymmetry
We present a class of supersymmetric models which address the flavor puzzle
and have an inverted hierarchy of sfermions. Their construction involves
quiver-like models with link fields in generic representations. The magnitude
of Standard-Model parameters is obtained naturally and a relatively heavy Higgs
boson is allowed without fine tuning. Collider signatures of such models are
possibly within the reach of LHC in the near future.Comment: LaTeX, 17 pages, 3 figures. V2: reference adde
Accidental stability of dark matter
We propose that dark matter is stable as a consequence of an accidental Z2
that results from a flavour-symmetry group which is the double-cover group of
the symmetry group of one of the regular geometric solids. Although
model-dependent, the phenomenology resembles that of a generic Higgs portal
dark matter scheme.Comment: 12 pages, final version, published in JHE
Phenomenological Implications of Deflected Mirage Mediation: Comparison with Mirage Mediation
We compare the collider phenomenology of mirage mediation and deflected
mirage mediation, which are two recently proposed "mixed" supersymmetry
breaking scenarios motivated from string compactifications. The scenarios
differ in that deflected mirage mediation includes contributions from gauge
mediation in addition to the contributions from gravity mediation and anomaly
mediation also present in mirage mediation. The threshold effects from gauge
mediation can drastically alter the low energy spectrum from that of pure
mirage mediation models, resulting in some cases in a squeezed gaugino spectrum
and a gluino that is much lighter than other colored superpartners. We provide
several benchmark deflected mirage mediation models and construct model lines
as a function of the gauge mediation contributions, and discuss their discovery
potential at the LHC.Comment: 29 pages, 9 figure
Wilson Lines and a Canonical Basis of SU(4) Heterotic Standard Models
The spontaneous breaking of SU(4) heterotic standard models by Z_3 x Z_3
Wilson lines to the MSSM with three right-handed neutrino supermultiplets and
gauge group SU(3)_C x SU(2)_L x U(1) x U(1) is explored. The two-dimensional
subspace of the Spin(10) Lie algebra that commutes with su(3)_C + su(2)_L is
analyzed. It is shown that there is a unique basis for which the initial soft
supersymmetry breaking parameters are uncorrelated and for which the U(1) x
U(1) field strengths have no kinetic mixing at any scale. If the Wilson lines
"turn on" at different scales, there is an intermediate regime with either a
left-right or a Pati-Salam type model. We compute their spectra directly from
string theory, and adjust the associated mass parameter so that all gauge
parameters exactly unify. A detailed analysis of the running gauge couplings
and soft gaugino masses is presented.Comment: 59 pages, 9 figure
Entropic Uncertainty Relations in Quantum Physics
Uncertainty relations have become the trademark of quantum theory since they
were formulated by Bohr and Heisenberg. This review covers various
generalizations and extensions of the uncertainty relations in quantum theory
that involve the R\'enyi and the Shannon entropies. The advantages of these
entropic uncertainty relations are pointed out and their more direct connection
to the observed phenomena is emphasized. Several remaining open problems are
mentionedComment: 35 pages, review pape
Mixed Mediation of Supersymmetry Breaking with Anomalous U(1) Gauge Symmetry
Models with anomalous U(1) gauge symmetry contain various superfields which
can have nonzero supersymmetry breaking auxiliary components providing the
origin of soft terms in the visible sector, e.g. the U(1) vector superfield,
the modulus or dilaton superfield implementing the Green-Schwarz anomaly
cancellation mechanism, U(1)-charged but standard model singlet matter
superfield required to cancel the Fayet-Iliopoulos term, and finally the
supergravity multiplet. We examine the relative strength between these
supersymmetry breaking components in a simple class of models, and find that
various different mixed mediations of supersymmetry breaking, involving the
modulus, gauge, anomaly and D-term mediations, can be realized depending upon
the characteristics of D-flat directions and how those D-flat directions are
stabilized with a vanishing cosmological constant. We identify two parameters
which represent such properties and thus characterize how the various
mediations are mixed. We also discuss the moduli stabilization and soft terms
in a variant of KKLT scenario, in which the visible sector K\"ahler modulus is
stabilized by the D-term potential of anomalous U(1) gauge symmetry.Comment: 30 pages, 5 figure
Supersymmetric contributions to and decays in SCET
We study the decay modes  and  using Soft Collinear Effective Theory. Within Standard Model and
including the error due to the SU(3) breaking effect in the SCET parameters we
find that BR  and BR
 corresponding to
solution 1 and solution 2 of the SCET parameters respectively.For the decay
mode , we find that BR  and BR  corresponding to solution 1 and
solution 2 of the SCET parameters respectively. We extend our study to include
supersymmetric models with non-universal A-terms where the dominant
contributions arise from diagrams mediated by gluino and chargino exchanges. We
show that gluino contributions can not lead to an enhancement of the branching
ratios of  and . In
addition, we show that SUSY contributions mediated by chargino exchange can
enhance the branching ratio of  by about 14% with
respect to the SM prediction. For the branching ratio of , we find that SUSY contributions can enhance its value by about 1% with
respect to the SM prediction.Comment: 25 pages,5 figures, version accepted for publicatio
- …
