381 research outputs found

    When Anomaly Mediation is UV Sensitive

    Full text link
    Despite its successes---such as solving the supersymmetric flavor problem---anomaly mediated supersymmetry breaking is untenable because of its prediction of tachyonic sleptons. An appealing solution to this problem was proposed by Pomarol and Rattazzi where a threshold controlled by a light field deflects the anomaly mediated supersymmetry breaking trajectory, thus evading tachyonic sleptons. In this paper we examine an alternate class of deflection models where the non-supersymmetric threshold is accompanied by a heavy, instead of light, singlet. The low energy form of this model is the so-called extended anomaly mediation proposed by Nelson and Weiner, but with potential for a much higher deflection threshold. The existence of this high deflection threshold implies that the space of anomaly mediated supersymmetry breaking deflecting models is larger than previously thought.Comment: 14 pages, 1 figure (version to appear in JHEP

    Soft branes in supersymmetry-breaking backgrounds

    Full text link
    We revisit the analysis of effective field theories resulting from non-supersymmetric perturbations to supersymmetric flux compactifications of the type-IIB superstring with an eye towards those resulting from the backreaction of a small number of anti-D3-branes. Independently of the background, we show that the low-energy Lagrangian describing the fluctuations of a stack of probe D3-branes exhibits soft supersymmetry breaking, despite perturbations to marginal operators that were not fully considered in some previous treatments. We take this as an indication that the breaking of supersymmetry by anti-D3-branes or other sources may be spontaneous rather than explicit. In support of this, we consider the action of an anti-D3-brane probing an otherwise supersymmetric configuration and identify a candidate for the corresponding goldstino.Comment: 36+5 pages. References added, minor typos correcte

    Spontaneous R-Parity Violation, A4A_4 Flavor Symmetry and Tribimaximal Mixing

    Full text link
    We explore the possibility of spontaneous R parity violation in the context of A4A_4 flavor symmetry. Our model contains SU(3)c×SU(2)L×U(1)YSU(3)_c \times SU(2)_L \times U(1)_Y singlet matter chiral superfields which are arranged as triplet of A4A_4 and as well as few additional Higgs chiral superfields which are singlet under MSSM gauge group and belong to triplet and singlet representation under the A4A_4 flavor symmetry. R parity is broken spontaneously by the vacuum expectation values of the different sneutrino fields and hence we have neutrino-neutralino as well as neutrino-MSSM gauge singlet higgsino mixings in our model, in addition to the standard model neutrino- gauge singlet neutrino, gaugino-higgsino and higgsino-higgsino mixings. Because all of these mixings we have an extended neutral fermion mass matrix. We explore the low energy neutrino mass matrix for our model and point out that with some specific constraints between the sneutrino vacuum expectation values as well as the MSSM gauge singlet Higgs vacuum expectation values, the low energy neutrino mass matrix will lead to a tribimaximal mixing matrix. We also analyze the potential minimization for our model and show that one can realize a higher vacuum expectation value of the SU(3)c×SU(2)L×U(1)YSU(3)_c \times SU(2)_L \times U(1)_Y singlet sneutrino fields even when the other sneutrino vacuum expectation values are extremely small or even zero.Comment: 18 page

    Flavor of quiver-like realizations of effective supersymmetry

    Full text link
    We present a class of supersymmetric models which address the flavor puzzle and have an inverted hierarchy of sfermions. Their construction involves quiver-like models with link fields in generic representations. The magnitude of Standard-Model parameters is obtained naturally and a relatively heavy Higgs boson is allowed without fine tuning. Collider signatures of such models are possibly within the reach of LHC in the near future.Comment: LaTeX, 17 pages, 3 figures. V2: reference adde

    Phenomenological Implications of Deflected Mirage Mediation: Comparison with Mirage Mediation

    Get PDF
    We compare the collider phenomenology of mirage mediation and deflected mirage mediation, which are two recently proposed "mixed" supersymmetry breaking scenarios motivated from string compactifications. The scenarios differ in that deflected mirage mediation includes contributions from gauge mediation in addition to the contributions from gravity mediation and anomaly mediation also present in mirage mediation. The threshold effects from gauge mediation can drastically alter the low energy spectrum from that of pure mirage mediation models, resulting in some cases in a squeezed gaugino spectrum and a gluino that is much lighter than other colored superpartners. We provide several benchmark deflected mirage mediation models and construct model lines as a function of the gauge mediation contributions, and discuss their discovery potential at the LHC.Comment: 29 pages, 9 figure

    Wilson Lines and a Canonical Basis of SU(4) Heterotic Standard Models

    Full text link
    The spontaneous breaking of SU(4) heterotic standard models by Z_3 x Z_3 Wilson lines to the MSSM with three right-handed neutrino supermultiplets and gauge group SU(3)_C x SU(2)_L x U(1) x U(1) is explored. The two-dimensional subspace of the Spin(10) Lie algebra that commutes with su(3)_C + su(2)_L is analyzed. It is shown that there is a unique basis for which the initial soft supersymmetry breaking parameters are uncorrelated and for which the U(1) x U(1) field strengths have no kinetic mixing at any scale. If the Wilson lines "turn on" at different scales, there is an intermediate regime with either a left-right or a Pati-Salam type model. We compute their spectra directly from string theory, and adjust the associated mass parameter so that all gauge parameters exactly unify. A detailed analysis of the running gauge couplings and soft gaugino masses is presented.Comment: 59 pages, 9 figure

    Entropic Uncertainty Relations in Quantum Physics

    Full text link
    Uncertainty relations have become the trademark of quantum theory since they were formulated by Bohr and Heisenberg. This review covers various generalizations and extensions of the uncertainty relations in quantum theory that involve the R\'enyi and the Shannon entropies. The advantages of these entropic uncertainty relations are pointed out and their more direct connection to the observed phenomena is emphasized. Several remaining open problems are mentionedComment: 35 pages, review pape

    Mixed Mediation of Supersymmetry Breaking with Anomalous U(1) Gauge Symmetry

    Full text link
    Models with anomalous U(1) gauge symmetry contain various superfields which can have nonzero supersymmetry breaking auxiliary components providing the origin of soft terms in the visible sector, e.g. the U(1) vector superfield, the modulus or dilaton superfield implementing the Green-Schwarz anomaly cancellation mechanism, U(1)-charged but standard model singlet matter superfield required to cancel the Fayet-Iliopoulos term, and finally the supergravity multiplet. We examine the relative strength between these supersymmetry breaking components in a simple class of models, and find that various different mixed mediations of supersymmetry breaking, involving the modulus, gauge, anomaly and D-term mediations, can be realized depending upon the characteristics of D-flat directions and how those D-flat directions are stabilized with a vanishing cosmological constant. We identify two parameters which represent such properties and thus characterize how the various mediations are mixed. We also discuss the moduli stabilization and soft terms in a variant of KKLT scenario, in which the visible sector K\"ahler modulus is stabilized by the D-term potential of anomalous U(1) gauge symmetry.Comment: 30 pages, 5 figure

    Supersymmetric contributions to Bˉsϕπ0\bar{B}_s \to \phi \pi^0 and Bˉsϕρ0\bar{B}_s \to \phi \rho^0 decays in SCET

    Full text link
    We study the decay modes Bˉsϕπ0\bar{B}_s\to \phi \pi^0 and Bˉsϕρ0\bar{B}_s\to \phi \rho^0 using Soft Collinear Effective Theory. Within Standard Model and including the error due to the SU(3) breaking effect in the SCET parameters we find that BR Bˉsϕπ0=712+1+2×108\bar{B}_s\to \phi \pi^0 =7_{-1-2}^{+1+2}\times 10^{-8} and BR Bˉsϕπ0=914+1+3×108\bar{B}_s\to \phi \pi^0=9_{-1-4}^{+1+3}\times 10^{-8} corresponding to solution 1 and solution 2 of the SCET parameters respectively.For the decay mode Bˉsϕρ0\bar{B}_s\to \phi \rho^0, we find that BR Bˉsϕρ0=20.2112+1+9×108\bar{B}_s\to \phi \rho^0 = 20.2^{+1+9}_{-1-12}\times 10^{-8} and BR Bˉsϕρ0=34.01.522+1.5+15×108 \bar{B}_s\to \phi \rho^0 = 34.0^{+1.5 + 15}_{-1.5-22}\times 10^{-8} corresponding to solution 1 and solution 2 of the SCET parameters respectively. We extend our study to include supersymmetric models with non-universal A-terms where the dominant contributions arise from diagrams mediated by gluino and chargino exchanges. We show that gluino contributions can not lead to an enhancement of the branching ratios of Bˉsϕπ0\bar{B}_s\to \phi \pi^0 and Bˉsϕρ0\bar{B}_s\to \phi \rho^0. In addition, we show that SUSY contributions mediated by chargino exchange can enhance the branching ratio of Bˉsϕπ0\bar{B}_s\to \phi \pi^0 by about 14% with respect to the SM prediction. For the branching ratio of Bˉsϕρ0\bar{B}_s\to \phi \rho^0, we find that SUSY contributions can enhance its value by about 1% with respect to the SM prediction.Comment: 25 pages,5 figures, version accepted for publicatio
    corecore