410 research outputs found
Limits of minimal models and continuous orbifolds
The lambda=0 't Hooft limit of the 2d W_N minimal models is shown to be
equivalent to the singlet sector of a free boson theory, thus paralleling
exactly the structure of the free theory in the Klebanov-Polyakov proposal. In
2d, the singlet sector does not describe a consistent theory by itself since
the corresponding partition function is not modular invariant. However, it can
be interpreted as the untwisted sector of a continuous orbifold, and this point
of view suggests that it can be made consistent by adding in the appropriate
twisted sectors. We show that these twisted sectors account for the `light
states' that were not included in the original 't Hooft limit. We also show
that, for the Virasoro minimal models (N=2), the twisted sector of our orbifold
agrees precisely with the limit theory of Runkel & Watts. In particular, this
implies that our construction satisfies crossing symmetry.Comment: 33 pages; v2: minor improvements and references added, published
versio
Discrete R-symmetries and Anomaly Universality in Heterotic Orbifolds
We study discrete R-symmetries, which appear in 4D low energy effective field
theory derived from hetetoric orbifold models. We derive the R-symmetries
directly from geometrical symmetries of orbifolds. In particular, we obtain the
corresponding R-charges by requiring that the couplings be invariant under
these symmetries. This allows for a more general treatment than the explicit
computations of correlation functions made previously by the authors, including
models with discrete Wilson lines, and orbifold symmetries beyond
plane-by-plane rotational invariance. Surprisingly, for the cases covered by
earlier explicit computations, the R-charges differ from the previous result.
We study the anomalies associated with these R-symmetries, and comment on the
results.Comment: 21 pages, 2 figures. Minor changes, typos corrected. Matches JHEP
published versio
Craniofacial dysmorphology in Down syndrome is caused by increased dosage of Dyrk1a and at least three other genes
Down syndrome (DS), trisomy of human chromosome 21 (Hsa21), occurs in 1 in 800 live births and is the most common human aneuploidy. DS results in multiple phenotypes, including craniofacial dysmorphology, which is characterised by midfacial hypoplasia, brachycephaly and micrognathia. The genetic and developmental causes of this are poorly understood. Using morphometric analysis of the Dp1Tyb mouse model of DS and an associated mouse genetic mapping panel, we demonstrate that four Hsa21-orthologous regions of mouse chromosome 16 contain dosage-sensitive genes that cause the DS craniofacial phenotype, and identify one of these causative genes as Dyrk1a. We show that the earliest and most severe defects in Dp1Tyb skulls are in bones of neural crest (NC) origin, and that mineralisation of the Dp1Tyb skull base synchondroses is aberrant. Furthermore, we show that increased dosage of Dyrk1a results in decreased NC cell proliferation and a decrease in size and cellularity of the NC-derived frontal bone primordia. Thus, DS craniofacial dysmorphology is caused by an increased dosage of Dyrk1a and at least three other genes
Controlling a magnetic Feshbach resonance with laser light
The capability to tune the strength of the elastic interparticle interaction
is crucial for many experiments with ultracold gases. Magnetic Feshbach
resonances are a tool widely used for this purpose, but future experiments
would benefit from additional flexibility such as spatial modulation of the
interaction strength on short length scales. Optical Feshbach resonances offer
this possibility in principle, but suffer from fast particle loss due to
light-induced inelastic collisions. Here we show that light near-resonant with
a molecular bound-to-bound transition can be used to shift the magnetic field
at which a magnetic Feshbach resonance occurs. This makes it possible to tune
the interaction strength with laser light and at the same time induce
considerably less loss than an optical Feshbach resonance would do
Composition, structure and stability of RuO_2(110) as a function of oxygen pressure
Using density-functional theory (DFT) we calculate the Gibbs free energy to
determine the lowest-energy structure of a RuO_2(110) surface in thermodynamic
equilibrium with an oxygen-rich environment. The traditionally assumed
stoichiometric termination is only found to be favorable at low oxygen chemical
potentials, i.e. low pressures and/or high temperatures. At realistic O
pressure, the surface is predicted to contain additional terminal O atoms.
Although this O excess defines a so-called polar surface, we show that the
prevalent ionic model, that dismisses such terminations on electrostatic
grounds, is of little validity for RuO_2(110). Together with analogous results
obtained previously at the (0001) surface of corundum-structured oxides, these
findings on (110) rutile indicate that the stability of non-stoichiometric
terminations is a more general phenomenon on transition metal oxide surfaces.Comment: 12 pages including 5 figures. Submitted to Phys. Rev. B. Related
publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm
Composition and structure of the RuO2(110) surface in an O2 and CO environment: implications for the catalytic formation of CO2
The phase diagram of surface structures for the model catalyst RuO2(110) in
contact with a gas environment of O2 and CO is calculated by density-functional
theory and atomistic thermodynamics. Adsorption of the reactants is found to
depend crucially on temperature and partial pressures in the gas phase.
Assuming that a catalyst surface under steady-state operation conditions is
close to a constrained thermodynamic equilibrium, we are able to rationalize a
number of experimental findings on the CO oxidation over RuO2(110). We also
calculated reaction pathways and energy barriers. Based on the various results
the importance of phase coexistence conditions is emphasized as these will lead
to an enhanced dynamics at the catalyst surface. Such conditions may actuate an
additional, kinetically controlled reaction mechanism on RuO2(110).Comment: 12 pages including 8 figure files. Submitted to Phys. Rev. B. Related
publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm
Abundance estimation of Ixodes ticks (Acari: Ixodidae) on roe deer (Capreolus capreolus)
Despite the importance of roe deer as a host for Ixodes ticks in central Europe, estimates of total tick burden on roe deer are not available to date. We aimed at providing (1) estimates of life stage and sex specific (larvae, nymphs, males and females, hereafter referred to as tick life stages) total Ixodes burden and (2) equations which can be used to predict the total life stage burden by counting the life stage on a selected body area. Within a period of 1½ years, we conducted whole body counts of ticks from 80 hunter-killed roe deer originating from a beech dominated forest area in central Germany. Averaged over the entire study period (winter 2007–summer 2009), the mean tick burden per roe deer was 64.5 (SE ± 10.6). Nymphs were the most numerous tick life stage per roe deer (23.9 ± 3.2), followed by females (21.4 ± 3.5), larvae (10.8 ± 4.2) and males (8.4 ± 1.5). The individual tick burden was highly aggregated (k = 0.46); levels of aggregation were highest in larvae (k = 0.08), followed by males (k = 0.40), females (k = 0.49) and nymphs (k = 0.71). To predict total life stage specific burdens based on counts on selected body parts, we provide linear equations. For estimating larvae abundance on the entire roe deer, counts can be restricted to the front legs. Tick counts restricted to the head are sufficient to estimate total nymph burden and counts on the neck are appropriate for estimating adult ticks (females and males). In order to estimate the combined tick burden, tick counts on the head can be used for extrapolation. The presented linear models are highly significant and explain 84.1, 77.3, 90.5, 91.3, and 65.3% (adjusted R2) of the observed variance, respectively. Thus, these models offer a robust basis for rapid tick abundance assessment. This can be useful for studies aiming at estimating effects of abiotic and biotic factors on tick abundance, modelling tick population dynamics, modelling tick-borne pathogen transmission dynamics or assessing the efficacy of acaricides
TOM40 Mediates Mitochondrial Dysfunction Induced by α-Synuclein Accumulation in Parkinson's Disease.
Alpha-synuclein (α-Syn) accumulation/aggregation and mitochondrial dysfunction play prominent roles in the pathology of Parkinson's disease. We have previously shown that postmortem human dopaminergic neurons from PD brains accumulate high levels of mitochondrial DNA (mtDNA) deletions. We now addressed the question, whether alterations in a component of the mitochondrial import machinery -TOM40- might contribute to the mitochondrial dysfunction and damage in PD. For this purpose, we studied levels of TOM40, mtDNA deletions, oxidative damage, energy production, and complexes of the respiratory chain in brain homogenates as well as in single neurons, using laser-capture-microdissection in transgenic mice overexpressing human wildtype α-Syn. Additionally, we used lentivirus-mediated stereotactic delivery of a component of this import machinery into mouse brain as a novel therapeutic strategy. We report here that TOM40 is significantly reduced in the brain of PD patients and in α-Syn transgenic mice. TOM40 deficits were associated with increased mtDNA deletions and oxidative DNA damage, and with decreased energy production and altered levels of complex I proteins in α-Syn transgenic mice. Lentiviral-mediated overexpression of Tom40 in α-Syn-transgenic mice brains ameliorated energy deficits as well as oxidative burden. Our results suggest that alterations in the mitochondrial protein transport machinery might contribute to mitochondrial impairment in α-Synucleinopathies
Spectral Parameters for Scattering Amplitudes in N=4 Super Yang-Mills Theory
49 pages, 20 figures; v2: typos fixedPlanar N=4 Super Yang-Mills theory appears to be a quantum integrable four-dimensional conformal theory. This has been used to find equations believed to describe its exact spectrum of anomalous dimensions. Integrability seemingly also extends to the planar space-time scattering amplitudes of the N=4 model, which show strong signs of Yangian invariance. However, in contradistinction to the spectral problem, this has not yet led to equations determining the exact amplitudes. We propose that the missing element is the spectral parameter, ubiquitous in integrable models. We show that it may indeed be included into recent on-shell approaches to scattering amplitude integrands, providing a natural deformation of the latter. Under some constraints, Yangian symmetry is preserved. Finally we speculate that the spectral parameter might also be the regulator of choice for controlling the infrared divergences appearing when integrating the integrands in exactly four dimensions.Peer reviewe
- …