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1 Introduction

Simplified versions of the AdS/CFT correspondence hold the promise of offering insights

into the mechanism that underly the duality. For example, the large N limit of the CFT at

weak coupling [1–4] is believed to be dual to a higher spin theory on the AdS background [5]

(see for example [6–9] for reviews). Higher spin theories lie in complexity somewhere

between field theories and string theories in that they contain infinitely many fields, but

far fewer than a fully fledged string theory. The corresponding duality is therefore much

more tractable than the stringy AdS/CFT correspondence, yet contains sufficiently much

structure in order to capture many of the essential features.

Some years ago, Klebanov & Polyakov made a concrete proposal along these lines [10]

(for related work see also [4, 11]). They conjectured that Vasiliev’s higher spin theory

– 1 –



J
H
E
P
0
3
(
2
0
1
2
)
1
0
4

on AdS4 is dual to the singlet sector of the 3d O(N) vector model in the large N limit.

Recently, impressive evidence in favour of this proposal has been found [12–14], see also [15–

20] for related work. Last year, a similar duality was proposed in one dimension less [21]:

it relates a family of higher spin theories on AdS3 [22, 23] to the large N limit of the WN

minimal models in 2d (see [24] for a review of W-algebras). This proposal was motivated

by the analysis of the asymptotic symmetries of higher spin theories on AdS3 [25, 26],

following [27], see also [28, 29] for subsequent work. By now it has been shown that the

spectra of the two theories agree in the N → ∞ limit [30] (see also [31]), and correlation

functions have been found to match [32–34] (see also [35]). Generalisations for orthogonal

groups have been studied [36, 37], and black hole solutions have been analysed [38, 39];

their entropy has (for λ = 0, 1) been matched to that of the dual CFT [40].

While the proposal of [21] is in many ways the natural lower dimensional analogue of

the Klebanov & Polyakov proposal, the details appear to be somewhat different. For the

case of the O(N) vector model in 3d, there are two conformal fixed points, the free and

the interacting theory, that are believed to be dual to two different higher spin theories

on AdS4. In the lower dimensional version, on the other hand, the WN models possess

a line of conformal fixed points in the large N limit that is parametrised by a ’t Hooft

like coupling 0 ≤ λ ≤ 1; this is mirrored by the fact that there exists a one-parameter

family of higher spin theories on AdS3. It seems natural to think of the theory at λ = 0

as corresponding to the ‘free’ fixed point, and in this paper we make this correspondence

more explicit. The λ = 0 theory corresponds to taking the level k of the WN minimal

model to infinity, before taking N → ∞. Working at arbitrary finite N , we show that

the k → ∞ limit of a WN minimal model, constructed following [21], can be described as

the singlet sector of a free theory (consisting of N − 1 free bosons). This is therefore the

direct analogue of the Klebanov-Polyakov proposal in one higher dimension. For N = 2,

the k → ∞ limit corresponds to taking the c → 1 limit of the Virasoro minimal models,

and the limit of [21] is analogous to what was considered in [41] (except that we restrict

ourselves to a subset of their spectrum for which the partition function converges).

The resulting conformal field theory is well-defined on the sphere, but it is not modular

invariant because of the singlet constraint, and hence the resulting conformal field theory is

not fully consistent.1 However, there is a very natural way in which to repair this: we can

think of the singlet condition as an orbifold projection, for which the above singlet sector

is the untwisted sector. Then in order to make the theory consistent, all we have to do is

to add in the twisted sectors. While this sounds straightforward in principle, there is one

somewhat unusual feature: the singlet constraint requires that we orbifold by a continuous

compact Lie group (rather than a discrete group), and thus the analysis requires some care.

In particular, the twisted sectors are labelled by a continuous parameter (that describes

the different conjugacy classes of the orbifold). As we shall see, the ground states of these

twisted sectors then have a natural interpretation in terms of the k → ∞ limit of the

WN minimal models: they describe the ‘light states’ that were not considered in the limit

1Note that at finite N , the central charge equals c = N − 1 in this limit, and hence the requirement of

modular invariance can be clearly posed.
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of [21] since they correspond to states where the size of the Young tableaux scales with k

(or N). These light states do not contribute in intermediate channels to the correlators of

the usual perturbative states from the untwisted sector, because the fusion of states with

finitely many Young boxes does not give rise to states where the number of boxes grows

with k.

Given that our orbifold construction is somewhat unusual — it is the orbifold of N −1

free bosons by the continuous group SU(N)/ZN — one may worry whether it is in fact

consistent. While we cannot prove this in general, we can relate our construction for N = 2

to a theory that is believed to be consistent. As was mentioned above, the untwisted sector

of theN = 2 orbifold can be thought of as a subsector of the c→ 1 limit of Virasoro minimal

models of [41]. It also turns out that the twisted sector has a very natural interpretation:

it seems to agree precisely with the alternative c→ 1 limit of the minimal models that was

proposed in [42]. In particular, we can show that the spectra coincide, that the fusion rules

of [42] are reproduced from our orbifold point of view, and that the boundary conditions

from which the construction of [42] originated agree with the usual fractional branes of our

orbifold theory. (The non-fractional branes also have a nice interpretation: they correspond

precisely to the additional boundary conditions that were later found in [43].) On the other

hand, the limit theory of [42] is believed to be consistent — it appears to coincide with

the c → 1 limit of Liouville theory [44] — and it has been checked to satisfy crossing

symmetry, which is a highly non-trivial constraint.2 Since we can relate our construction

to a seemingly consistent conformal field theory, this gives strong evidence in favour of the

assertion that our continuous orbifold construction makes sense.

The paper is organised as follows. In section 2 we explain why the λ = 0 theory can

be described as the singlet sector of a free theory. In section 3 we show that this projection

can be realised as a continuous orbifold, and construct the twisted sector explicitly for the

case of N = 2. In section 4 we explain the close connection between the twisted sector

for N = 2 and the construction of Runkel & Watts [42]. Section 5 explains the relation

between the twisted sector ground states and the ‘light states’ of the WN minimal models

for large k, and section 6 contains our summary and some open problems. There are two

appendices where some of the more technical calculations are described.

2 Limits of minimal models

The minimal models we are interested in are the WN coset models

su(N)k ⊕ su(N)1
su(N)k+1

(2.1)

that appear in the proposal of [21]. The ’t Hooft parameter is defined to be

λ =
N

k +N
, (2.2)

2One may ask why the twisted sector of an orbifold should by itself satisfy crossing symmetry. The

reason is that the contribution from the untwisted sector in intermediate channels is of measure zero and

hence does not modify the crossing symmetry analysis.
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and the limit of [21] consists of taking N, k to infinity while keeping λ fixed. The ‘free’

theory should correspond to λ = 0, i.e. to the limit where we first take k → ∞, and then

N → ∞. In this paper we shall mostly study the case of finite N ; in order to relate our

analysis to the λ = 0 case of [21] we should subsequently take N → ∞.

The central charge of the minimal model (2.1) equals

c = (N − 1)

(

1− N(N + 1)

(N + k)(N + k + 1)

)

, (2.3)

and hence approaches c → N − 1 in the limit k → ∞. There are different ways in which

one may take this limit. In this section we shall define the limit representations by keeping

the representation labels of su(N) fixed while taking the limit; this is the analogue of what

was done in [21].

In order to understand the resulting representations in detail, it is convenient to de-

scribe the coset theory in terms of a Drinfeld-Sokolov (DS) reduction. From this perspec-

tive, the representations of the coset theory are labelled by (see for example [24] for an

introduction to these matters)

Λ = α+Λ+ + α−Λ− , (2.4)

where

α+α− = −1 , α− = −
√

kDS +N , α0 = α+ + α− , (2.5)

and kDS is the level of the DS-reduction; this is related to the level k in the coset description

via
1

k +N
=

1

kDS +N
− 1 . (2.6)

Furthermore, Λ+ and Λ− are representations of su(N). In the limit k → ∞, the level of

the DS reduction goes to kDS → −N + 1, and hence

α+
∼= 1 , α−

∼= −1 , α0
∼= 0 . (2.7)

The eigenvalues of the highest weight state (Λ+; Λ−) with respect to the zero mode of the

(non-primary) spin s fields are (see [24, eq. (6.50)])

us(Λ) = (−1)s−1
∑

i1<···<is

s
∏

j=1

[(Λ, εij ) + (s− j)α0]

∼= (−1)s−1
∑

i1<···<is

s
∏

j=1

(Λ+ − Λ−, εij ) , (2.8)

where εi are the weights in the fundamental (vector) representation of su(N), and in going

to the second line we have set α0
∼= 0, as follows from (2.7). Thus in the limit k → ∞, the

coset representation (Λ+; Λ−) only depends on (Λ+ − Λ−); for example, for N = 2, this is

just the familiar statement that, as k → ∞,

h(r; s) ≃ (r − s)2

4
, (2.9)
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where (r; s) are the usual Kac labels.

The irreducible degenerateWN representations at c = N−1 are thus already accounted

for by the representations labelled by (Λ; 0), where Λ is an arbitrary weight of su(N); any

other degenerate representation, i.e. any representation labelled by (Λ+; Λ−), is (at λ = 0)

isomorphic to a direct sum of these [30] (see also [41, Remark 4.1.7] for the Virasoro case).

In order to determine the actual decomposition, recall that the character of the (Λ+; Λ−)

representation equals the branching function of the level k = 1 affine character with respect

to the finite dimensional su(N) representation (Λ+ ⊗ Λ∗
−), see [21, 24]. Thus we conclude

that the decomposition is

(Λ+; Λ−) ∼=
⊕

Λ

NΛ
Λ+,Λ∗

−

(Λ; 0) for k → ∞ , (2.10)

where NΛ
Λ+,Λ∗

−

are the Clebsch-Gordon coefficients

Λ1 ⊗ Λ2 =
⊕

Λ

NΛ
Λ1,Λ2

Λ . (2.11)

Note that this implies in particular that we have the equivalences

(f; 0) ∼= (0; f̄) and (f̄; 0) ∼= (0; f) as k → ∞, (2.12)

where f and f̄ denote the fundamental and anti-fundamental representations of su(N),

respectively. The natural ‘charge-conjugation’ theory that contains each of these degenerate

representations once is then

HU =
⊕

Λ

H(Λ;0) ⊗ H̄(Λ∗;0) , (2.13)

where the sum runs over all representations of su(N), and Λ∗ is the conjugate representation

to Λ.

2.1 The dual gravity perspective

The equivalence of conformal field theory representations described by (2.10) (and in par-

ticular by (2.12)) is also mirrored in the dual higher spin gravity theory, at least if we

subsequently take N → ∞. Recall from [21] that the two complex scalar fields labelled by
[

(f; 0), (f̄; 0)
]

and [(0; f), (0; f̄)] always have the same mass, but satisfy in general different

boundary conditions since the conformal weights of the corresponding boundary fields are

h(f; 0) = h(f̄; 0) =
1

2
(1 + λ) , h(0; f) = h(0; f̄) =

1

2
(1− λ) . (2.14)

In our limit we have λ = 0, and hence the two boundary conditions coincide. Thus the two

complex scalar fields are indistinguishable, i.e. they should describe the ‘same’ field. It is

then natural to consider the subtheory that only contains one of the two complex scalar

fields; this is similar to what was proposed (albeit for general λ) in [32]. The dual CFT

then only has one set of representations, say those of the form (Λ; 0); its spectrum is thus

precisely equal to that in eq. (2.13).
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2.2 Interpretation as a singlet sector

Next we want to show that (2.13) actually has a very natural interpretation as the singlet

sector of a theory of (N − 1) free bosons. In order to see this, recall that the su(N) level

k = 1 theory can be written in terms of (N − 1) free bosons compactified on the su(N)

lattice. Written in terms of the affine level one representations, the free theory has thus

the form

Hfree =
⊕

µ∈P+
1

Hŝu
µ ⊗ H̄ŝu

µ∗ , (2.15)

where Hŝu
µ denotes the affine representation labelled by µ, and the sum runs over all

integrable level one representations, i.e. those representations where the sum of the Dynkin

labels is at most one. Here µ∗ is again the conjugate representation to µ.

The WN algebra at c = N−1 can be identified with the Casimir subalgebra of the level

one affine algebra [24], i.e. WN is the commutant of the zero mode algebra su(N) in the

vertex operator algebra based on ŝu(N)1. Thus any representation Hŝu
µ can be decomposed

into representations of su(N)⊕WN ,

Hŝu
µ =

⊕

Λ

Λ⊗H(Λ;0) , (2.16)

and the usual Howe-type duality arguments (see e.g. [45] for the basic idea) imply that the

multiplicity space with which Λ appears in Hŝu
µ is an irreducible representation of WN ; by

comparing the character (see above), it is then clear that the relevant representation must

be the one labelled by (Λ; 0). Note that Λ runs over all representations of the (finite) Lie

algebra for which the center acts as in µ, i.e. for which Λ− µ lies in the root lattice.

Combining (2.15) and (2.16) we now conclude that the free theory has the structure

Hfree =
′
⊕

Λ1,Λ2

(Λ1 ⊗ Λ∗
2)⊗

(

H(Λ1;0) ⊗ H̄(Λ∗

2;0)

)

, (2.17)

where the sum runs over all representations Λj of su(N), with the only constraint that Λ1−
Λ2 lies in the root lattice — this is indicated by the prime. Here the space is decomposed

with respect to su(N)⊕WN , both for left- and right-movers.

It is now immediate that the representation space in (2.13) equals precisely

HU = H(0)
free , (2.18)

where the index (0) means that we restrict ourselves to the subspace of Hfree for which the

zero mode action Ja0 + J̄a0 is trivial, i.e. to the states that are singlets under the diagonal

action of the left- and right-moving zero mode. Indeed, requiring this singlet condition

simply means that we restrict each tensor product (Λ1 ⊗ Λ∗
2) to the singlet sector; the

trivial representation is contained in (Λ1 ⊗ Λ∗
2) if and only if Λ1

∼= Λ2, and if this is the

case, it appears with multiplicity one. Thus (2.18) follows from the comparison with (2.13).

If we specialise to the case N = 2, the spectrum of HU is a subsector of the spectrum

proposed in [41].
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3 The continuous orbifold

The above singlet condition is very reminiscent of what was proposed by Klebanov &

Polyakov in the corresponding 3d situation [10]. In the present context, we know that,

by itself, the singlet sector is not a consistent conformal field theory since the partition

function of HU is not modular invariant. However, there is a natural way to complete the

above theory to a consistent conformal field theory: we can think of the singlet constraint

as the effect of an orbifold projection, and then the completion just consists of adding in

the appropriate twisted sectors. There is, however, one subtlety here: the relevant orbifold

group is a compact Lie group (rather than a finite discrete group), and hence the analysis

requires some care. On the other hand, since compact Lie groups behave in many respects

very similar to finite discrete groups, it should not be too surprising that a construction

along these lines is possible.

3.1 The orbifold projection

The simplest way to describe the singlet condition is via the projection operator

P =
1

|G|

∫

G
dµ(g) g , (3.1)

where |G| is the total volume of G as measured with respect to the Haar measure dµ(g).

The following discussion will be described for an arbitrary Lie group G; eventually we shall

apply this to the case where the Lie group is G = SU(N)/ZN , and even more specifically

to G = SU(2)/Z2
∼= SO(3).3 The partition function from the untwisted sector is then

ZU =
1

|G|

∫

G
dµ(g) TrHfree

(

g qL0−
c
24 q̄L̄0−

c
24

)

=
1

|G|

∫

T/W
dµ̂(h) TrHfree

(

h qL0−
c
24 q̄L̄0−

c
24

)

, (3.2)

where h is an element in the Cartan torus T, and W is the Weyl group of G. Here we

have used that any group element g ∈ G is conjugate to some element in T/W, as well as

the fact that the trace only depends on the conjugacy class Cong of g. Finally, dµ̂(h) is

the measure

dµ̂(h) = vol(Conh) dµ(h) . (3.3)

The above calculation is illustrated for the case of SO(3) in appendix A.1, for which ZU

turns out to equal, see eq. (A.11)

ZU =
∞
∑

r=0

|χr(q)|2 , (3.4)

with

χr(q) = ϑr(q)− ϑr+2(q) , and ϑr(q) =
q

r2

4

η(q)
. (3.5)

3Note that since the representations in Hfree are all pairs of representations (Λ1 ⊗Λ∗

2) for which Λ1 −Λ2

lies in the root lattice, the center ZN of SU(N) acts trivially, and hence the actual orbifold group is

G = SU(N)/ZN .

– 7 –



J
H
E
P
0
3
(
2
0
1
2
)
1
0
4

Since χr(q) is the character of the irreducible c = 1 Virasoro representation labelled by

(r + 1; 1) whose conformal dimension equals h = r2

4 in the limit (see (2.9)), ZU agrees

indeed with the partition function of (2.13).

3.2 The twisted sector

As is familiar from orbifolds of discrete groups, the untwised sector of an orbifold does

not define a consistent conformal field theory by itself since the corresponding partition

function is not modular invariant (and hence the theory cannot be consistently defined on

higher genus surfaces). In order to make the theory consistent we therefore have to add

the twisted sectors.

It follows from general orbifold considerations [46, 47] that the twisted sectors are

labelled by conjugacy classes of group elements. For the case at hand, the twisted sectors

are thus labelled by elements h ∈ T/W. Each twisted sector (labelled by h) then has to be

projected onto the states that are invariant under the action of the centraliser of h in G,

Ch = {g ∈ G : hg = gh} . (3.6)

For a generic element h ∈ T/W, the centraliser Ch is just the Cartan torus Ch = T. Thus

the actual contribution of the h-twisted sector equals

ZT(h) =
1

|T|

∫

T

dµ(t) TrHh

(

t qL0−
c
24 q̄L̄0−

c
24

)

, (3.7)

where Hh denotes the states in the h-twisted sector.

Let us illustrate this for the example of SO(3), whose untwisted sector is given in (3.4)

and worked out in appendix A.1. Using the parametrisation (A.2) we can label the elements

of T/W by h = h(ψ), where in SO(3) we have the identifications ψ ∼= ψ+π and ψ ∼= π−ψ;
denoting the representative of ψ with 0 ≤ ψ ≤ π

2 by [ψ], the elements of T/W can thus be

labelled by α ≡ [ψ]
π ∈ [0, 12 ].

The partition function of the α-twisted sector is obtained by applying the S-modular

transformation to the trace of the untwisted sector with the insertion of h(ψ(α)), i.e. to

the integrand of (A.11)

Z
(α)
U (τ) =

∑

n,w∈Z

ϑn+w(q)ϑn−w(q̄) e
2πinα . (3.8)

The S-modular transformation of ϑr(q) equals

ϑr(q̃) =
1√
2

∫ ∞

−∞
ds eπirs ϑs(q) , (3.9)

where q̃ = e−2πi/τ , and thus

Z
(α)
U (− 1

τ ) =
1

2

∑

n,w∈Z

∫ ∞

−∞
ds

∫ ∞

−∞
ds̄ e2πinα eπin(s+s̄)eπiw(s−s̄) ϑs(q)ϑs̄(q̄)

=
∑

n∈Z

∑

m∈Z

∫ ∞

−∞
ds e2πinα e2πins ϑs(q)ϑs+2m(q̄) (3.10)

=
∑

m,l∈Z

ϑ−α+l(q)ϑ−α+l+2m(q̄) =
∑

m,m̄∈Z,m−m̄∈2Z

ϑ−α+m(q)ϑ−α+m̄(q̄) .

– 8 –



J
H
E
P
0
3
(
2
0
1
2
)
1
0
4

In the second and third line we have used the identity

∑

w∈Z

eiπw(s−s̄) = 2
∑

m∈Z

δ(s− s̄+ 2m) . (3.11)

Finally, the projection onto the invariant states in the α-twisted sector then leads to

ZT(α) =
∑

m∈Z

ϑ−α+m(q)ϑ−α+m(q̄) (3.12)

since the index−α+m and−(−α+m̄) can be identified with the left- and right-moving U(1)

charge, respectively; this can for example be deduced from the description of the twisted

sector in terms of twisted representations of the affine algebra ŝu(2), see appendix A.2 for

details. Alternatively, at least for irrational α, this projection can also be obtained by

demanding invariance under the T : τ 7→ τ + 1 transformation.

Integrating over the different twist sectors labelled by α, the total contribution of the

twisted sector is then

ZT =

∫ 1
2

0
dα

∑

m∈Z

ϑ−α+m(q)ϑ−α+m(q̄)

=

∫ ′∞

0
dxϑx(q)ϑx(q̄) . (3.13)

Strictly speaking the points with x ∈ N are excluded from this integral since α = 0

corresponds to the untwisted sector; this is indicated by the prime in the integral. Our

twisted sector agrees then precisely with the partition function that was considered by

Runkel & Watts [42]. We shall elaborate on the precise relation further in section 4.

From the point of view of our orbifold, (3.13) only describes the contribution of the

twisted sector. The total partition function should then be obtained by ‘adding’ to (3.13)

the contribution from the untwisted sector (3.4), which contains the irreducible Virasoro

representations with h = r2

4 , r ∈ N0. However, in the context of our continuous orbifold

we have to be careful how to define this sum since the untwisted sector can be thought of

as a twisted sector in the limit of vanishing twist. This suggests that the natural way to

include the untwisted sector contribution is to extend the integral in (3.13) to include also

the integer points. There is a further subtlety in that the Virasoro characters for h = r2

4

are not just ϑr(q), but equal χr(q) = ϑr(q)− ϑr+2(q), see (3.5), because of the null-vector

at level r + 1. However, for the purpose of doing the integral this is immaterial since

the integer points x ∈ N0 are of measure zero. Thus we propose that the full partition

function equals

Zorb =

∫ ∞

0
dxϑx(q)ϑx(q̄) , (3.14)

without any restriction on the integral. This is then modular invariant since it equals

precisely one half of the partition function of a single uncompactified free boson

Zorb =
1

2
√

ℑ(τ) η(q)η(q̄)
. (3.15)
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However, as will become clear below, the orbifold theory only shares the partition function

with a free boson theory, but is otherwise very different indeed! This is similar to what

happened in the construction of Runkel & Watts [42].

4 The c → 1 limit of the Virasoro minimal models

In the previous section we have proposed that the k → ∞ limit of the coset models (2.1)

can be described in terms of a continuous orbifold of a free boson theory by the compact

Lie group G = SU(N)/ZN . This orbifold construction is somewhat unconventional since

the orbifold group in question is continuous rather than discrete. One may therefore worry

whether the resulting theory is indeed consistent. As we have seen above, at least for the

case of N = 2, the partition function of the orbifold theory is in fact modular invariant.

In this section we want to give further evidence for the consistency of our orbifold for the

case of N = 2.

As we mentioned before the partition function of the twisted sector of the N = 2

orbifold theory, see (3.13), agrees with the spectrum of the Runkel & Watts limit [42]

of the Virasoro minimal models. In this section, we will argue that this correspondence

goes beyond just the level of the spectrum. In particular, after explaining the dictionary

between the two descriptions in section 4.1 (see also section 4.3), we show that the fusion

rules of [42] have a very natural interpretation from our orbifold point of view (section 4.2).

We shall also construct the boundary conditions of [48] that were the starting point of the

Runkel & Watts analysis as fractional branes of our orbifold (section 4.4). Since the Runkel

& Watts limit is believed to define a consistent theory (that can alternatively be described

as the c→ 1 limit of Liouville theory, [43, 44]) this in turn also gives strong support to our

proposal that our orbifold construction leads to a consistent conformal field theory.

4.1 The identifications

Let us first explain the relationship between the two descriptions in detail. In the analysis

of Runkel & Watts [42], the Virasoro primary fields at c = 1 are labelled by x ∈ R+ − N0

with hx = x2

4 . In terms of our orbifold description, the primary φx (as well as its Virasoro

descendants) comes from the α-twisted sector, where

α =
[ψ]

π
=

{

fx if 0 < fx ≤ 1
2

1− fx if 1
2 ≤ fx < 1 .

(4.1)

Here [ψ] is the representative of ψ with 0 < [ψ] ≤ π
2 (see the discussion after eq. (3.7)),

and fx is the fractional part of x,

x = fx + ⌊x⌋ , (4.2)

where ⌊x⌋ is the largest integer less than or equal to x, i.e. fx = x − ⌊x⌋. Note that

a representative for the α-twist in (4.1) is the group element h(ψ) with ψ = πx in the

parametrisation (A.2). With these identifications the spectra of the two descriptions match

precisely. Indeed, it follows from (A.35) that the α-twisted sector (where 0 < α ≤ 1
2) can
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be decomposed in terms of irreducible Virasoro representations as

H(α) =
⊕

n∈N0

(

HVir

h=
(α+n)2

4

⊗ H̄Vir

h̄=
(α+n)2

4

⊕ HVir

h=
(1−α+n)2

4

⊗ H̄Vir

h̄=
(1−α+n)2

4

)

. (4.3)

This then accounts precisely for all φx-sectors, given the relation (4.1) above.

4.2 Fusion rules

Next we want to study the structure of the operator product expansion. It follows from [42,

eq. (9)] that the fusion of φx with φy only contains φz provided that either

⌊x⌋+ ⌊y⌋+ ⌊z⌋ is even and |fx − fy| < fz < min(fx + fy, 2− fx − fy) (4.4)

or

⌊x⌋+ ⌊y⌋+ ⌊z⌋ is odd and |fx − fy| < 1− fz < min(fx + fy, 2− fx − fy) . (4.5)

We now want to explain how to reproduce this constraint from the orbifold point of view.

From this perspective, the product of a state in the αx-twisted sector with a state in the

αy-twisted sector can only lead to states in the αz-twisted sector provided that there are

representatives gx, gy and gz in the corresponding conjugacy classes such that [49–51]

gz = gx · gy . (4.6)

Next we recall from (A.4) and (A.6) that the group elements in the conjugacy class of

αx can be taken to have χ = ψx = πx (with θ = θx and φ = φx arbitrary) in the

parametrisation (A.1). The product of two group elements with χ = ψx and χ = ψy is

then a group element with χ = ψz, where

cosψz = cosψx cosψy − sinψx sinψy

[

cos θx cos θy + sin θx sin θy cos(φx − φy)
]

. (4.7)

The expression in brackets is bounded by

− 1 ≤
[

cos θx cos θy + sin θx sin θy cos(φx − φy)
]

≤ 1 (4.8)

and hence

min
(

cos(ψx − ψy), cos(ψx + ψy)
)

≤ cosψz ≤ max
(

cos(ψx − ψy), cos(ψx + ψy)
)

. (4.9)

The further analysis now depends on the parity of ⌊x⌋ + ⌊y⌋. If ⌊x⌋ + ⌊y⌋ is even and

working with the representatives ψx = πx and ψy = πy, then

cos(ψx − ψy) = cos (|fx − fy|π) (4.10)

cos(ψx + ψy) = cos ((fx + fy)π) =

{

cos ((fx + fy)π) if fx + fy ≤ 1

cos ((2− fx − fy)π) if 1 < fx + fy < 2 ,
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where the arguments on the right hand side are all in the interval [0, π], for which the

cosine is injective. Since we also have with ψz = πz

cos(ψz) =

{

cos(fz π) if ⌊z⌋ ∈ 2N

cos ((1− fz)π) if ⌊z⌋ ∈ 2N+ 1
(4.11)

(4.9) implies for ⌊z⌋ even

|fx − fy| ≤ fz ≤ min(fx + fy, 2− fx − fy) (4.12)

while for ⌊z⌋ odd we have instead

|fx − fy| ≤ 1− fz ≤ min(fx + fy, 2− fx − fy) . (4.13)

This then reproduces precisely (4.4) and (4.5), respectively, except that instead of the

strict inequalities ‘<’, (4.12) and (4.13) involve the non-strict inequalities ‘≤’; this will be

commented on in section 4.3 below. The analysis for odd ⌊x⌋+ ⌊y⌋ is essentially identical.

Now the analogue of (4.10) is

cos(ψx − ψy) = cos ((1− |fx − fy|)π) (4.14)

cos(ψx + ψy) = cos (|1− (fx + fy)|π) ,

and one obtains (4.13) if ⌊z⌋ is even, and (4.12) if ⌊z⌋ is odd. This then accounts for the

remaining cases of (4.4) and (4.5), again except for replacing strict inequalities by non-strict

inequalities.

4.3 The full spectrum

Recall that the reduced part of the Roggenkamp & Wendland [41] spectrum (where we re-

strict ourselves to the representations of the form (r; 1)) describes precisely the untwisted

sector of our orbifold, while the Runkel & Watts spectrum [42] corresponds to the contribu-

tion from the twisted sector. The untwisted sector is crossing symmetric by itself, but does

not define a consistent theory since the partition function is not modular invariant. On the

other hand, the twisted sector is usually, i.e. for standard discrete orbifolds, not consistent

by itself since the OPE of two twisted sector states typically also involves untwisted sector

contributions. The situation may be slightly different here, since at least crossing symme-

try is already satisfied by the twisted sector itself, and the partition function is (at least

formally) modular invariant: in both calculations, the contribution from the untwisted

sector is of measure zero and therefore does not modify the answer. However, the orbifold

point of view suggests that the theory can be (and probably should be) enlarged to contain

both twisted and untwisted sector contributions.

Incidentally, the possibility of extending the theory in this manner was already sug-

gested in [42]. As is explained below eq. (6) of that paper, one can fairly naturally introduce

the identity operator (corresponding to x = 0) by the formal limit

1 = lim
x→0

1
xφx , (4.15)
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and they indicate that similar constructions should also work for any other x ∈ N. In

terms of the OPE coefficients, this should then in particular mean that one extends the

strict inequalities in the fusion rules (4.4) and (4.5) to non-strict inequalities. The resulting

extended limit theory should then agree with our continuous orbifold.

4.4 The fractional branes

The limit theory of Runkel & Watts [42] was constructed so as to be compatible with

the boundary conditions that had previously been considered in [48]. These boundary

conditions are labelled by a ∈ N, and the open string spectrum between the two boundary

conditions a and b equals

Hopen
ab =

a+b−2
⊕

r=|a−b|

HVir

h= r2

4

, (4.16)

where the sum over r runs over every other integer, i.e. r is even or odd depending on

the parity of a + b. We now want to show that these boundary conditions have a natural

interpretation from our continuous orbifold point of view.

In order to describe the boundary conditions of the orbifold theory recall that the

conformal branes of the ‘mother theory’, the ŝu(2) affine theory at level k = 1, are labelled

by group elements g ∈ SU(2) [52], where the corresponding boundary state is characterised

by the gluing condition
(

Jan − gJ̄a−ng
−1
)

||g〉〉 = 0 . (4.17)

Geometrically, the brane corresponding to g describes a D0-brane sitting at the point g

on the group manifold [53]. Under the diagonal group action of the element h ∈ SO(3) ∼=
SU(2)/Z2, the above boundary state gets mapped to

h ||g〉〉 = ||h g h−1〉〉 , (4.18)

as follows directly from (4.17): indeed, h ||g〉〉 satisfies the gluing condition

(

(hJanh
−1)− h gh−1 (hJ̄a−nh

−1)hg−1h−1
)

h ||g〉〉 = 0 , (4.19)

and if we redefine the basis of the Lie algebra as Ĵan = hJanh
−1, and similarly for the

right-movers, we reproduce precisely (4.17) with g replaced by h g h−1.

The fixed points of this group action are therefore the branes associated to the identity,

g = 1, and to the non-trivial element of the center, g = C. As is familiar from the general

construction of D-branes (or boundary conditions) in orbifold theories, see e.g. [54], the

corresponding D-brane is then a ‘fractional brane’ that will also couple to the twisted

sectors of the orbifold. The fractional branes are characterised by a (in general projective)

representation R of the orbifold group G [55–57]; this determines the open string spectrum

between the boundary conditions labelled by R and S as

ZRS(q) =
1

|G|
∑

g∈G

TrH

(

g qL0−
c
24

)

χ∗
R(g)χS(g) , (4.20)
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where H is the open string spectrum of the brane before orbifolding, and χR(g) is the group

character of g in the representation R. Using

χ∗
R(g)χS(g) =

∑

Q

NSQ
R χ∗

Q(g) , (4.21)

where NSQ
R are the Clebsch-Gordon coefficients for the decomposition of R∗ ⊗ S into the

representations Q∗, we can rewrite (4.20) as

ZRS(q) =
∑

Q

NSQ
R 1

|G|
∑

g∈G

TrH

(

g qL0−
c
24

)

χ∗
Q(g) . (4.22)

Decomposing the open string spectrum H with respect to the action of G (as was done

in (2.16))

H =
⊕

S

S ⊗H(S) , so that TrH

(

g qL0−
c
24

)

=
∑

S

χS(g) TrH(S)

(

qL0−
c
24

)

, (4.23)

and using the usual orthogonality relation of group characters

1

|G|
∑

g∈G

χ∗
Q(g)χS(g) = δQS (4.24)

the open string spectrum in (4.22) consists then precisely of those states H(Q) in H that

transform in the Q-representation of the orbifold group

ZRS(q) =
∑

Q

NSQ
R TrH(Q)

(

qL0−
c
24

)

. (4.25)

Returning to the case at hand, if both branes are associated to the same fixed point,

the relative open string before orbifolding is just the vacuum (j = 0) representation of

the ŝu(2) affine theory at level k = 1; if the two branes are at different fixed points (one

at g = 1, the other at g = C), the open string spectrum between them consists of the

j = 1
2 representation of ŝu(2). Under the action of the orbifold group these representations

decompose as

Hsu(2)
j=0 =

⊕

l∈N0

Dl ⊗HVir
h=l2 , Hsu(2)

j= 1
2

=
⊕

l∈N0+
1
2

Dl ⊗HVir
h=l2 , (4.26)

where Dl is the spin l representation of G = SU(2). Since the projection (4.22) picks out

the states that transform in the Q representation, the requirement that the open string

spectrum is non-empty demands that Q is half-integer if the two branes in question sit at

different fixed points. Thus there is a selection rule for what representations of the orbifold

arise: if the fractional brane sits at g = 1, say, then Rmust be a conventional representation

of the orbifold group SO(3), i.e. have integer spin, while for the brane located at g = C, the

representation R must be projective, i.e. have half-integer spin. (A natural interpretation

of this is to say that the orbifold has ‘discrete torsion’, and that the representation of the

orbifold group at the non-trivial fixed point is therefore projective [55–57].)
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Let us denote by ||g,R〉〉 the fractional brane sitting at the fixed point g and being

characterised by the representation R. Then we propose that the branes of [48] are to be

identified with the fractional branes in our orbifold as

(a) ⇐⇒
{

||1, Dl(a)〉〉 a ∈ 2N− 1

||C,Dl(a)〉〉 a ∈ 2N ,
where l(a) =

a− 1

2
. (4.27)

With this identification the relative open string spectrum reproduces precisely (4.16). In-

deed, the above arguments imply that the projection picks out those Virasoro representa-

tions from (4.26) that transform as a⊗ b, and this is precisely what (4.16) amounts to.

Incidentally, this identification is also compatible with the bulk boundary couplings.

It follows from [42, eq. (14)] that the bulk-boundary coupling of the brane corresponding

to (a) equals

B(a;x) = sin(πax) , (4.28)

where x ∈ R+ labels the different bulk fields of their analysis. In terms of our orbifold,

B(a;x) should be interpreted as the coefficient with which the above fractional branes

couple to the twisted sectors. At least for the case where the representation R is not

projective — the situation is more complicated in the projective case [57] — the boundary

state of the fractional D-brane sitting at the identity g = 1 is schematically (i.e. up to

normalisations) of the form

||1, R〉〉 = ||1〉〉+
∑

α

χR(h(α)) |1〉〉α , (4.29)

where ||1〉〉 is the boundary state of the original theory as in (4.17), while |1〉〉α is the

Ishibashi state in the α-twisted sector. Here χR(h(α)) is the character of any representative

h(α) in the conjugacy class labelled by α, evaluated in the representation R. For the case

at hand, where we can take h(α) to lie in the Cartan torus and to correspond to the group

element (A.2) with ψ = πα, we have

χDl
(h(α)) =

sin((2l + 1)πα)

sin(πα)
. (4.30)

Since x and α are related as in (4.1), and since (2l + 1) = a, see (4.27), we have

B(a;x) = sin(πx)χDl
(h(α)) . (4.31)

Thus the bulk-boundary coupling constants agree up to the irrelevant normalisation con-

stant sin(πx) that is independent of the boundary conditions.

4.5 The bulk branes

It was observed in [43] that the limit theory of Runkel & Watts also possesses another class

of boundary conditions that are labelled by s ∈ R. Actually, the self-spectrum of these

D-branes only depends on s mod 1, and it is given by4

Ss = {x ∈ R+ : −min(2fs, 2− 2fs) < x < min(2fs, 2− 2fs) mod 2} . (4.32)

4Note that the p parameter of [43] is related to the x parameter of [42] as p = x
2
.
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These branes also have a very natural interpretation from our orbifold point of view: in

addition to the fractional branes that are associated to the fixed points of (4.18), the

orbifold theory also possesses ‘bulk branes’ that are simply obtained as orbifold invariant

superpositions of the branes of the mother theory, i.e. schematically as

||ψ〉〉 =
∫

Γ
dµ(g)

(

||gh(ψ)g−1〉〉+ ||gh(2π − ψ)g−1〉〉
)

, (4.33)

where Γ is the set of group elements (A.3) parametrised by η and ϕ, and dµ(g) is the

restriction of the (suitably rescaled) Haar measure to Γ. Note that the second term in (4.33)

arises because conjugation by the Weyl group element w ∈ SO(3) maps ψ to 2π − ψ,

see (A.6).

Obviously ||ψ〉〉 = ||2π − ψ〉〉, and hence the above boundary conditions are labelled by

ψ ∈ [0, π]. As we shall see below, we can identify s = ψ
π , but this then only accounts

for s ∈ [0, 1]. In order to understand the origin of the integer part of s, we note that

there is another (hidden) variable characterising these boundary conditions: the above

branes are not quite the standard bulk branes since each ||gh(ψ)g−1〉〉 is actually fixed

by a one-dimensional subgroup of the orbifold group, namely by gTg−1. Thus we must

specify in addition a representation of T ∼= U(1), i.e. an integer. This integer then extends

s ∈ [0, 1] to s ∈ R. The integer part of s (i.e. this integer) characterises how the boundary

conditions (4.33) couple to the twisted sector of the orbifold; however, as will become clear

momentarily, it does not play any significant role for the determination of the self-spectrum,

and hence we will not attempt to work this out in detail. Note that this mirrors the fact

that Ss in (4.32) also only depends on s mod 1.

In order to determine the self-spectrum of these boundary conditions (and hence repro-

duce (4.32)) we recall that the open string spectrum between two boundary states ||g1〉〉 and
||g2〉〉 is simply equal to the g−1

1 g2 twisted vacuum representation of ŝu(2)1, see e.g. [52].

From the point of view of the Virasoro representation theory, the relevant open string

spectrum is thus

H(β)
0 =

⊕

m∈Z

HVir

h=
(2m−β)2

4

, (4.34)

where β is determined by the condition that

g−1
1 g2 = g h(πβ) g−1 (4.35)

for some g. (This just means that h(πβ) is the element in the Cartan torus that is conjugate

to g−1
1 g2.)

It is now immediate how to determine the open string spectrum of (4.33): the self

spectrum of ||ψ = πs〉〉 consists of the β-twisted vacuum representation, where β is defined

by (4.35), and g1 is either conjugate to h(πs) or h(π(2−s)), and likewise for g2. In addition,

if both g1 and g2 are invariant under the same U(1) subgroup of SU(2), the relevant

open string spectrum must be projected onto the zero U(1) charge sector.5 However, this

5If the two branes have parameters s1 and s2 with s1 − s2 ∈ Z, the open string spectrum must be

projected onto the states with U(1) charge s1 − s2.
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projection only applies to a set of measure zero since generically g1Tg
−1
1 and g2Tg

−1
2 do not

coincide. For the purpose of finding the continuous part of the spectrum we can therefore

ignore this U(1) projection.

In order to work out the resulting open string spectrum explicitly, we can follow the

same arguments as in section 4.2, see in particular eq. (4.7), to conclude that β must satisfy

cos(2fsπ) ≤ cos(πβ) ≤ 1 . (4.36)

(This is the condition irrespective of whether g1 and g2 are conjugate to h(πs) or h(π(2−
s)).) Thus we conclude that

−min(2fs, 2− 2fs) ≤ β ≤ min(2fs, 2− 2fs) mod 2 . (4.37)

Together with (4.34) this then reproduces precisely (4.32), apart from the by now familiar

difference between strict inequalities and non-strict inequalities.

5 The twisted sectors from the WN coset point of view

In the previous section we have shown that for the case of N = 2, our orbifold theory is

very closely related to the construction of Runkel & Watts [42]. In this section we want

to return to the general case. We want to explain that the ground states of the twisted

sectors are directly related to the ‘light’ states of the WN minimal models in the k → ∞
limit [21, 30].

As was explained in detail in section 4.1, for the case of N = 2 the label of the twist

sectors α ∈ [0, 12 ] is related to the parameter x of Runkel & Watts [42] as in (4.1); in

particular, for x ∈ [0, 12 ] we simply have α = x. On the other hand, it is implicit from the

analysis of Runkel & Watts [42] (see also [43]) that we can think of the fields labelled by

x ∈ [0, 12 ] as the limit of the (r; r) fields for which r is not kept constant as p = k + 2 is

taken to infinity, but rather scales as r ∼ αp. Indeed, the conformal dimension of the (r; s)

representation has the expansion

h(r; s) ≃ (r − s)2

4
+
r2 − s2

4p
+
s2 − 1

4p2
+O

(

1

p3

)

. (5.1)

Thus we have for r = s = αp

h(r; r)|r=αp ≃ α2p2 − 1

4p2
≃ α2

4
. (5.2)

We therefore conclude that we can identify the ground states of the twisted sectors of

our continuous orbifold with the ‘light’ states of the c → 1 limit of the Virasoro minimal

models.

We now want to argue that a similar relation holds for the WN case (see also [58] where

some aspects of the Runkel & Watts analysis have been generalised to the WN case). Recall

from [21, 30] that the light states of the k → ∞ limit of the WN coset theory arise for

Λ+ = Λ− = Λ, for which the conformal dimension is of the form

h(Λ; Λ) =
1

2p(p+ 1)
(Λ,Λ + 2ρ) , (5.3)
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where p = k+N , ρ is the Weyl vector of su(N), and (·, ·) denotes the usual inner product

on the weight space. Writing Λ in terms of Dynkin labels, Λ = [Λ1, . . . ,ΛN−1], we have

(see e.g. appendix B.1 of [21])

1

2p(p+ 1)
(Λ, 2ρ) =

1

p(p+ 1)

N−1
∑

j=1

Λj
j(N − j)

2
≤ D(N)

p(p+ 1)

N−1
∑

j=1

Λj ≤
D(N) k

p(p+ 1)
, (5.4)

where D(N) is some N -dependent constant, and we have used that Λ is an integrable

weight at level k and hence satisfies
∑

j Λj ≤ k. As we take k → ∞ for fixed N , the right

hand side goes to zero. Thus in this limit we have (compare also [58])

h(Λ; Λ) ≃ 1

2p(p+ 1)
(Λ,Λ) ≃ 1

2
(Λ̃, Λ̃) , with Λ̃ =

1

p
Λ . (5.5)

The ‘light states’ are therefore obtained by scaling the representations Λ(p) with p such

that Λ̃ = 1
pΛ

(p) approaches a constant vector. Since each Λ(p) must be an integrable weight

at level k = p−N , it follows that Λ̃ must satisfy

N−1
∑

j=1

Λ̃j ≤ 1 , (5.6)

where Λ̃ = [Λ̃1, . . . , Λ̃N−1] in the usual Dynkin basis. Furthermore we have Λ̃j ≥ 0.

As in the Virasoro case above, we now want to identify (a subset of) these Λ̃ with the

different twists of our continuous orbifold. Recall from the discussion of section 3.2 that

the different twist sectors are labelled by α, where α parametrises the elements in T/W,

with T the Cartan torus and W the Weyl group of SU(N)/ZN . Using the description in

terms of twisted representations as in section A.2, it follows that the conformal dimension

of the α-twisted sector ground state equals (see e.g. [59, eq. (4.7)])

h(α) =
1

2
(α, α) , (5.7)

where α is now thought of as a weight, with (·, ·) the natural inner product on the weight

space. The comparison with (5.5) thus suggests that we should identify

Λ̃ = α . (5.8)

As is shown in appendix B, the weights Λ̃ satisfying Λ̃j ≥ 0 and (5.6) are in one-to-one

correspondence with the weights α parametrising the elements in T̂/W, where T̂ is the

Cartan torus of SU(N). For the actual quotient space T/W, where T is the Cartan torus

of SU(N)/ZN , the weights α have in addition to satisfy (B.13) and (B.14), which is the

analogue of the constraint α ≤ 1
2 (rather than α ≤ 1) for the case of SO(3) = SU(2)/Z2.

This therefore demonstrates that the light states of small conformal dimension can be

identified with the ground states of the twisted sectors. The remaining light states (as

well as some of the states corresponding to the scaled representations with Λ+ 6= Λ−)

correspond then to descendants in these twisted sectors.
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6 Conclusions

In this paper we have shown that the λ = 0 ’t Hooft limit of the WN minimal models [21]

can be identified with the singlet sector of a free boson theory. This is the natural analogue

of the free fixed point of the O(N) vector model that appeared in the duality of Klebanov

& Polyakov in one dimension higher [10]. The singlet sector of the free boson theory in

2 dimensions is not a consistent conformal field theory by itself since the corresponding

partition function is not modular invariant. However, one can think of it as the untwisted

sector of a continuous orbifold. This implies that it can be made consistent by adding in

the appropriate twisted sectors. The relevant twisted sectors correspond precisely to the

‘light states’ of small conformal dimension; they were not included in the limit of [21].

Our orbifold construction is somewhat unusual in that the orbifold group is continuous

(and compact) rather than discrete. As a consequence one may be worried about the

consistency of the resulting theory. In order to dispel this suspicion we have shown that

for N = 2, i.e. the c→ 1 limit of the Virasoro minimal models, our construction is closely

related to the model proposed in [42]. Given that the latter is known to satisfy a number of

non-trivial consistency conditions (in particular crossing symmetry), this implies that the

same is true for our continuous orbifold, at least for N = 2. Recently the analysis of [42]

was partially generalised to N > 2 in [58], where it was argued that the limit theory can

be identified with a Toda field theory, see also [60]; it would be interesting to check that

also these limit theories allow for an orbifold interpretation as argued above.

In the context of the higher spin duality, our analysis gives a nice CFT interpretation

to the ‘light states’ at λ = 0. One may wonder to which extent this description could

also work for λ > 0. Obviously, for λ > 0, the theory is no longer free, but it would be

interesting to understand whether some aspects of the orbifold description survive when

the coupling is switched on. It would also be interesting to understand the relation of

these twisted sectors to the recent proposal that the light states correspond to conical

surpluses [61].
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A The case of SO(3) = SU(2)/Z2

In this appendix we calculate the partition function ZU (see eq. (3.2)) of the untwisted

sector explicitly for the case of SO(3) = SU(2)/Z2. We also explain how the corresponding

twisted sectors can be described in terms of twisted representations of ŝu(2).
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A.1 The untwisted sector

Let us parametrise an arbitrary group element in SU(2) as (see e.g. [62, eq. (2.5)])

g(χ, θ, φ) =

(

cosχ+ i sinχ cos θ i sinχ sin θ eiφ

i sinχ sin θ e−iφ cosχ− i sinχ cos θ

)

, (A.1)

where χ, φ ∈ [0, 2π], while θ ∈ [0, π2 ]. In order to describe SO(3) = SU(2)/Z2, we have to

identify χ ∼= χ+ π, so that for SO(3) we only have χ ∈ [0, π]. We take the Cartan torus of

SU(2) to consist of the group elements of the form

h(ψ) =

(

cosψ i sinψ

i sinψ cosψ

)

, (A.2)

where ψ ∈ [0, 2π]; for SO(3), the Cartan torus T is then of the same form, except that

ψ ∈ [0, π]. For

g(η, ϕ) =
1√
2

(

eiη eiϕ

−e−iϕ e−iη

)

(A.3)

we find

g(η, ϕ)h(ψ) g(η, ϕ)−1 =

(

cosψ + i sinψ cos(ϕ− η) sinψ sin(ϕ− η) ei(ϕ+η)

− sinψ sin(ϕ− η) e−i(ϕ+η) cosψ − i sinψ cos(ϕ− η)

)

= g

(

ψ,ϕ− η, ϕ+ η − π

2

)

(A.4)

in the notation of (A.1). Thus every group element in SU(2) is in the conjugacy class of

an element of the Cartan torus, and similarly for SO(3).

The Weyl group of SU(2) is Z2, and it is generated by the group element

w =

(

0 1

−1 0

)

, (A.5)

which maps the Cartan torus under conjugation to itself

h(ψ) 7→ w h(ψ)w−1 =

(

cosψ −i sinψ
−i sinψ cosψ

)

= h(2π − ψ) . (A.6)

For SO(3), where ψ ∈ [0, π], the Weyl group then identifies ψ ∼= π − ψ. In the following it

will be convenient to take ψ ∈ R+, and to define [ψ] to be the representative of ψ (after

using the identifications ψ ∼= ψ + π and ψ ∼= π − ψ) with 0 < [ψ] ≤ π
2 . We shall usually

parametrise the set T/W instead of [ψ] by α ≡ [ψ]
π ∈ [0, 12 ].

Using the coordinates in (A.1), the Haar measure on SU(2) takes the form

dµ = sin2 χ sin θ dχ dθ dφ , (A.7)

and thus the volume of SO(3) is

|SO(3)| =
∫ π

0
dχ sin2 χ

∫ π
2

0
dθ sin θ

∫ 2π

0
dφ = π2 , (A.8)
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while the volume of the conjugacy class containing h(ψ) equals

vol
(

Conh(ψ)
)

= 2π sin2(ψ) + 2π sin2(π − ψ) = 4π sin2(ψ) . (A.9)

In order to determine the contribution from the untwisted sector recall that the partition

function of a free boson at the self-dual radius equals

Zfree =
1

η η̄

∑

n,w

q
(n+w)2

4 q̄
(n−w)2

4 , (A.10)

where η ≡ η(τ) is the Dedekind eta function, and η̄ ≡ η(τ̄), with q = exp(2πiτ) and

q̄ = exp(−2πiτ̄). Imposing the projection of (3.2) then leads to the untwisted sector

partition function

ZU =
4

π

∫ π
2

0
dψ sin2(ψ)

1

η η̄

∑

n,w∈Z

q
(n+w)2

4 q̄
(n−w)2

4 e2inψ

=
4

π

∫ π
2

0
dψ sin2(ψ)

1

η η̄

∑

n,w∈Z

q
(n+w)2

4 q̄
(n−w)2

4 cos(2nψ) (A.11)

=
1

η η̄

(

∑

w∈Z

q
w2

4 q̄
w2

4 − 1

2

∑

w∈Z

q
w2

4 q̄
(w+2)2

4 − 1

2

∑

w∈Z

q
(w+2)2

4 q̄
w2

4

)

=
∞
∑

r=0

|χr(q)|2 ,

where χr(q) is defined in (3.5), and we have used that

∫ π
2

0
dψ sin2(ψ) cos(2nψ) =















π
4 n = 0

−π
8 n = ± 1

0 n ∈ Z\{0,±1} .

(A.12)

A.2 Interpretation in terms of twisted representations

The α-twisted sector can also be interpreted in terms of twisted representations of the affine

ŝu(2) algebra, for a review of twisted representations see e.g. [63, section 3.5]. Recall that

the free boson theory (A.10) is actually equivalent to the level one affine ŝu(2) theory. The

twisted sectors are then described by twisted representations of the affine ŝu(2) theory.

Since the twists are inner, the corresponding twisted algebras are all isomorphic to the

untwisted algebra.

In order to explain this in more detail, let us fix conventions for the ŝu(2) affine algebra

at level k. In the Cartan-Weyl basis it is generated by the modes

[J3
m, J

±
n ] = ±J±

m+n , [J3
m, J

3
n] =

k

2
mδm,−n (A.13)

[J+
m, J

−
n ] = 2 J3

m+n + kmδm,−n . (A.14)

In addition we have the Virasoro modes Lm, whose commutation relations are

[Lm, Ln] = (m− n)Lm+n +
c

12
m (m2 − 1) δm,−n (A.15)

[Lm, J
a
n ] = −nJam+n . (A.16)
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The modes of the α-twisted algebra are then of the form K3
m, K

±
s , where m ∈ Z while the

modings of the K±
s generators are s ∈ Z± α, respectively. Furthermore, we denote by L̂m

the Virasoro modes in the twisted representation. These modes satisfy formally the same

commutation relations as the Jam and Lm, i.e.

[K3
m,K

±
s ] = ±K±

m+s , [K3
m,K

3
n] =

k

2
mδm,−n (A.17)

[K+
r ,K

−
s ] = 2K3

r+s + k r δr,−s (A.18)

[L̂m, L̂n] = (m− n) L̂m+n +
c

12
m (m2 − 1) δm,−n (A.19)

[L̂m,K
a
p ] = −pKa

m+p . (A.20)

The two algebras are isomorphic, the isomorphism being given by

ϕα(J
±
m) = K±

m±α (A.21)

ϕα(J
3
m) = K3

m +
α

2
k δm,0 (A.22)

ϕα(Lm) = L̂m + αK3
m +

k

4
α2δm,0 , (A.23)

as one can easily verify explicitly. The inverse map is then simply

ϕ−1
α (K±

s ) = J±
s∓α (A.24)

ϕ−1
α (K3

m) = J3
m − α

2
k δm,0 (A.25)

ϕ−1
α (L̂m) = Lm − αJ3

m +
k

4
α2δm,0 . (A.26)

With these preparations it is now easy to describe the twisted representations. The un-

twisted highest weight representations are labelled by j = 0, 12 , . . . ,
k
2 , and they are gener-

ated from a highest weight states satisfying

Jan |j〉 = 0 (n > 0) , J+
0 |j〉 = 0 , J3

0 |j〉 = j|j〉 , L0|j〉 =
j(j + 1)

k + 2
|j〉 , (A.27)

by the action of the negative modes. The representation has a singular vector of the form

(J+
−1)

k+1−2j |j〉 ∼= 0 , (A.28)

which generates the full null space. The twisted representation acts on the same vector

space, but we describe the action in terms of the Ka
p and L̂m modes, using ϕ−1

α . Since

0 < α ≤ 1
2 — in fact 0 < α < 1 would suffice — the ground state |j〉 is still highest weight

with respect to the twisted modes as

K+
s |j〉 = J+

s−α|j〉 = 0 for s = m+ α > 0 (A.29)

K−
s |j〉 = J−

s+α|j〉 = 0 for s = m− α > 0 . (A.30)
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However, the K3
0 and L̂0 eigenvalues are now shifted as

K3
0 |j〉 =

(

j − kα

2

)

|j〉 , L̂0|j〉 =
(

j(j + 1)

k + 2
− αj +

α2

4

)

|j〉 . (A.31)

For the case of k = 1 (that is of primary interest to us), the possible values of j are j = 0

and j = 1
2 . Then the corresponding eigenvalues are

K3
0 |0〉 = −α

2
|0〉 L̂0|0〉 =

α2

4
|0〉 (A.32)

K3
0 |12〉 =

(1− α)

2
|12〉 L̂0|12〉 =

(1− α)2

4
|12〉 . (A.33)

Thus we conclude that the conformal dimensions of the α-twisted representations are
α2

4 , and (1−α)2

4 , respectively. Since the twisted and untwisted representations are isomorphic

as vector spaces, it is straightforward to determine the character of the twisted represen-

tation from the untwisted character using (A.26). Because of the free boson realisation of

the level one theory, the unspecialised characters Tr j(q
L0−c/24yJ

3
0 ) are

χ0(q, y) =
1

η(q)

∑

n∈Z

qn
2
yn , χ 1

2
(q, y) =

1

η(q)

∑

n∈Z

q(n−
1
2
)2yn−

1
2 , (A.34)

and hence the corresponding α-twisted characters are

χ
(α)
0 (q) =

1

η(q)

∑

n∈Z

qn
2
q−nαq

α2

4 =
1

η(q)

∑

n∈Z

q
(−α+2n)2

4 =
∑

n∈Z

ϑ−α+2n (A.35)

χ
(α)
1
2

(q) =
1

η(q)

∑

n∈Z

q(n−
1
2
)2q−α(n−

1
2
)q

α2

4 =
1

η(q)

∑

n∈Z

q
(−α+2n−1)2

4 =
∑

n∈Z

ϑ−α+2n−1 .

This then matches precisely (3.10). It is also clear from this analysis that the U(1) charge

equals −α
2 +n and −α

2 +(n− 1
2), respectively, and thus the projection onto the U(1) singlet

states for the left-right spectrum leads precisely to (3.12).

B Identifying twists with weights

In this appendix we first want to show that the weights Λ̃ satisfying Λ̃j ≥ 0 as well as (5.6)

are in one-to-one correspondence with elements in T̂/W, where T̂ is the Cartan torus of

SU(N), see also [64]. Let ǫi, i = 1, . . . , N be the usual orthonormal basis, in terms of which

the roots of su(N) are described by

ei,j = ǫi − ǫj , i 6= j ∈ {1, . . . , N} . (B.1)

The simple roots can be taken to be ei ≡ ei,i+1, i = 1, . . . , N − 1, and the corresponding

fundamental weights are

λi =
i
∑

j=1

ǫj −
i

N

N
∑

j=1

ǫj , i = 1, . . . , N − 1 . (B.2)
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In this description the Weyl group W acts by permuting the basis vector ǫj . Writing Λ̃ as

Λ̃ =

N−1
∑

s=1

Λ̃s λs =

N
∑

i=1

li ǫi (B.3)

we have

lj =
N−1
∑

s=j

Λ̃s −
B

N
, B =

N−1
∑

s=1

s Λ̃s . (B.4)

By construction we have
∑

j lj = 0. Note further that since all Λ̃s ≥ 0 it follows that

l1 ≥ l2 ≥ · · · ≥ lN (B.5)

and the condition that
∑

s Λ̃s ≤ 1 becomes

l1 − lN ≤ 1 . (B.6)

Because of the ordering (B.5) this condition is equivalent to |li − lj | ≤ 1 for all i, j.

We now want to show that the space of all (l1, . . . , lN ) satisfying (B.5) and (B.6) is in

one-to-one correspondence with elements in T̂/W. First we recall that the Cartan torus

can be identified with the vector space of ‘weights’

α =
N
∑

j=1

αjǫj with
N
∑

j=1

αj = 0 , (B.7)

modulo the addition of roots. Because we are only interested in the quotient by the Weyl

group, we can use the Weyl group action to order the components, i.e. we may assume

without loss of generality that

α1 ≥ α2 ≥ · · · ≥ αN . (B.8)

Now there are two cases to consider: if ∆ ≡ α1 − αN ≤ 1, i.e. if all |αi − αj | ≤ 1, we

identify α directly with Λ̃. Alternatively, i.e. if ∆ ≡ α1 − αN > 1, we subtract from α the

root e1N , i.e. we consider

α′ = α− (ǫ1 − ǫN ) =

N
∑

j=1

α′
jǫj = (α1 − 1)ǫ1 +

N−1
∑

j=2

αjǫj + (αN + 1)ǫN . (B.9)

Then we reorder (if necessary) the components of α′ so that they satisfy again (B.8). If

the reordering does not involve either α′
1 or α′

N , then ∆′ ≤ ∆− 1 (if either α′
1 or α′

N is not

reordered) or ∆′ = ∆ − 2 (if both are not reordered). On the other hand, if both α′
1 and

α′
N are reordered, then either α′

1 = αN + 1 or α′
1 = α2 ≤ α1 and either α′

N = α1 − 1 or

α′
N = αN−1 ≥ αN . In any case it then follows that ∆′ ≤ ∆ — the most subtle case arises

for α′
1 = αN + 1 and α′

N = α1 − 1 for which

∆′ = αN + 1− α1 + 1 = 2− (α1 − αN ) < 1 . (B.10)

– 24 –



J
H
E
P
0
3
(
2
0
1
2
)
1
0
4

Continuing in this manner we can thus find a suitable root e so that α+ e satisfies ∆ ≤ 1.

(Note that it can happen that in the recursion step the value of ∆ does not decrease,

∆′ = ∆, but this is only the case if α′
1 = α2 = α1 and α′

N = αN−1 = αN . It is then

clear that at least after N
2 iteration steps, the value of ∆ must strictly decrease. Thus the

iterative procedure terminates.)

We conclude that any element in T̂/W can be brought into a form satisfying (B.5)

and (B.6). It is also easy to see (by essentially the same arguments) that not two elements

of this form (with the exception of some elements with α1 − αN = 1) can differ by a root.

This completes the proof of the first statement.

We are actually interested in the Cartan torus T of SU(N)/ZN . The generator of the

center ZN can be identified with

cN =
1

N

N−1
∑

i=1

i ei =
1

N

N−1
∑

i=1

ǫi −
(N − 1)

N
ǫN . (B.11)

The Cartan torus T is thus obtained from T̂ upon dividing out the multiples of cN , and the

quotient space T/W is obtained from T̂/W by dividing out the lattice that is generated by

the vectors

cj =
1

N

∑

i 6=j

ǫi −
(N − 1)

N
ǫj , j = 1, . . . , N , (B.12)

i.e. by the image vectors of cN under the Weyl group action. In the quotient space T/W
we can therefore reduce the vectors α further to those that satisfy in addition

αj − αj+1 ≤
1

2
for all j = 1, . . . , N − 1 , (B.13)

as well as

α1 − αN ≤ 1−max
i

(αi − αi+1) . (B.14)

In order to see that (B.13) can be achieved, suppose that αj − αj+1 >
1
2 for some 1 ≤ j ≤

N − 1. (Since α1 − αN ≤ 1, this can happen at most for one j.) Then it follows that

α′ = α+

j
∑

i=1

ci (B.15)

after reordering has the form

α′ =

(

αj+1 +
j

N
, . . . , αN +

j

N
, α1 − 1 +

j

N
, . . . , αj − 1 +

j

N

)

. (B.16)

Since α′
1 − α′

N = 1− (αj − αj+1) <
1
2 < 1, the vector α′ satisfies then condition (B.13), as

well as (B.6).

In order to see that we can in addition impose (B.14), let j be the value for which

αj − αj+1 is maximal. If α1 − αN > 1 − (αj − αj+1), we consider α′ = α +
∑j

i=1 cj of

the form (B.16). Then the differences α′
i − α′

i+1 for i 6= N − j agree with the differences

αl − αl+1 with l 6= j, while for i = N − j we now have

α′
N−j − α′

N−j+1 = αN +
j

N
−
(

α1 − 1 +
j

N

)

= 1− (α1 − αN ) < αj − αj+1 ≤
1

2
(B.17)
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since (α1 − αN ) > 1 − (αj − αj+1) ≥ 1
2 . Because all the differences α′

i − α′
i+1 are smaller

or equal than αj − αj+1, the overall difference α′
1 − α′

N now satisfies the condition (B.14)

α′
1 − α′

N = 1− (αj − αj+1) ≤ 1−max
i

(α′
i − α′

i+1) . (B.18)

We close by noting that the allowed non-trivial weights of the level one algebra are of

the form Λ
(j)
i = δij for j = 1, . . . , N − 1, and hence equal in the orthogonal basis

Λ(j) = −
j
∑

i=1

cj . (B.19)

It is then manifest from the above discussion that T̂/W can be written as the union of

T/W, together with the shifted weights Λ(j) + T/W. The latter weights appear in the

twisted version of the level one Λ(j) representation (where we twist again by an element in

T/W). This mirrors precisely what happened for N = 2, compare eq. (A.35).
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