549 research outputs found

    Activation of sperm motility in the euryhaline tilapia Sarotherodon melanotheron heudelotii (Dumeril, 1859) acclimatized to fresh, sea and hypersaline waters

    Get PDF
    The effects of osmolality and ions were examined on motility of sperm from males of Sarotherodon melanotheron heudelotii acclimatized in tanks at salinities set at 0, 35 and 70 g L-1. The range of osmolality that enabled sperm activation, shifted and broadened as the maintenance salinity of broodfish increased. The requirement of extracellular Ca2+ for activation of sperm motility increased when the maintenance salinity of broodfish was higher

    Active Detectors for Plasma Soft X-Ray Detection at PALS

    Get PDF
    This paper summarizes the work carried out for an experimental study of low-energy nuclear excitation by laser-produced plasma at the PALS Prague laser facility. We describe the adaptation and shielding of single-quantum active radiation detectors developed at IEAP CTU Prague to facilitate their operation inside the laser interaction chamber in the vicinity of the plasma target. The goal of this effort is direct real-time single-quantum detection of plasma soft X-ray radiation with energy above a few keV and subsequent identification of the decay of the excited nuclear states via low-energy gamma rays in a highly radiative environment with strong electromagnetic interference

    Collapse of an Instanton

    Full text link
    We construct a two parameter family of collapsing solutions to the 4+1 Yang-Mills equations and derive the dynamical law of the collapse. Our arguments indicate that this family of solutions is stable. The latter fact is also supported by numerical simulations.Comment: 17 pages, 1 figur

    Growth and properties of GaSbBi alloys

    Get PDF
    Molecular-beam epitaxy has been used to grow GaSb 1āˆ’ x Bi x alloys with x up to 0.05. The Bi content, lattice expansion, and film thickness were determined by Rutherford backscattering and x-ray diffraction, which also indicate high crystallinity and that >98% of the Bi atoms are substitutional. The observed Bi-induced lattice dilation is consistent with density functional theory calculations. Optical absorption measurements and valence band anticrossing modeling indicate that the room temperature band gap varies from 720ā€‰meV for GaSb to 540ā€‰meV for GaSb 0.95Bi0.05, corresponding to a reduction of 36ā€‰meV/%Bi or 210ā€‰meV per 0.01ā€‰Ć… change in lattice constant

    Band gap reduction in InNxSb1-x alloys: Optical absorption, k . P modeling, and density functional theory

    Get PDF
    Using infrared absorption, the room temperature band gap of InSb is found to reduce from 174 (7.1ā€‰Ī¼m) to 85ā€‰meV (14.6ā€‰Ī¼m) upon incorporation of up to 1.13% N, a reduction of āˆ¼79ā€‰meV/%N. The experimentally observed band gap reduction in molecular-beam epitaxial InNSb thin films is reproduced by a five band k ā‹…Ā· P band anticrossing model incorporating a nitrogen level, EN, 0.75ā€‰eV above the valence band maximum of the host InSb and an interaction coupling matrix element between the host conduction band and the N level of Ī² = 1.80ā€‰eV. This observation is consistent with the presented results from hybrid density functional theory

    Modulation of Dnmt3b function in vitro by interactions with Dnmt3L, Dnmt3a and Dnmt3b splice variants

    Get PDF
    DNA methylation, an essential regulator of transcription and chromatin structure, is established and maintained by the coordinated action of three DNA methyltransferases: DNMT1, DNMT3A and DNMT3B, and the inactive accessory factor DNMT3L. Disruptions in DNMT3B function are linked to carcinogenesis and genetic disease. DNMT3B is also highly alternatively spliced in a tissue- and disease-specific manner. The impact of intra-DNMT3 interactions and alternative splicing on the function of DNMT3 family members remains unclear. In the present work, we focused on DNMT3B. Using a panel of in vitro assays, we examined the consequences of DNMT3B splicing and mutations on its ability to bind DNA, interact with itself and other DNMT3's, and methylate DNA. Our results show that, while the C-terminal catalytic domain is critical for most DNMT3B functions, parts of the N-terminal region, including the PWWP domain, are also important. Alternative splicing and domain deletions also influence DNMT3Bā€™s cellular localization. Furthermore, our data reveal the existence of extensive DNMT3B self-interactions that differentially impact on its activity. Finally, we show that catalytically inactive isoforms of DNMT3B are capable of modulating the activity of DNMT3Aā€“DNMT3L complexes. Our studies therefore suggest that seemingly ā€˜inactiveā€™ DNMT3B isoforms may influence genomic methylation patterns in vivo

    Growth and properties of GaSbBi alloys

    Get PDF
    Molecular-beam epitaxy has been used to grow GaSb 1āˆ’ x Bi x alloys with x up to 0.05. The Bi content, lattice expansion, and film thickness were determined by Rutherford backscattering and x-ray diffraction, which also indicate high crystallinity and that >98% of the Bi atoms are substitutional. The observed Bi-induced lattice dilation is consistent with density functional theory calculations. Optical absorption measurements and valence band anticrossing modeling indicate that the room temperature band gap varies from 720ā€‰meV for GaSb to 540ā€‰meV for GaSb 0.95Bi0.05, corresponding to a reduction of 36ā€‰meV/%Bi or 210ā€‰meV per 0.01ā€‰Ć… change in lattice constant

    A DNMT3B Alternatively Spliced Exon and Encoded Peptide Are Novel Biomarkers of Human Pluripotent Stem Cells

    Get PDF
    A major obstacle in human stem cell research is the limited number of reagents capable of distinguishing pluripotent stem cells from partially differentiated or incompletely reprogrammed derivatives. Although human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) express numerous alternatively spliced transcripts, little attention has been directed at developing splice variant-encoded protein isoforms as reagents for stem cell research. In this study, several genes encoding proteins involved in important signaling pathways were screened to detect alternatively spliced transcripts that exhibited differential expression in pluripotent stem cells (PSCs) relative to spontaneously differentiated cells (SDCs). Transcripts containing the alternatively spliced exon 10 of the de novo DNA methyltransferase gene, DNMT3B, were identified that are expressed in PSCs. To demonstrate the utility and superiority of splice variant specific reagents for stem cell research, a peptide encoded by DNMT3B exon 10 was used to generate an antibody, SG1. The SG1 antibody detects a single DNMT3B protein isoform that is expressed only in PSCs but not in SDCs. The SG1 antibody is also demonstrably superior to other antibodies at distinguishing PSCs from SDCs in mixed cultures containing both pluripotent stem cells and partially differentiated derivatives. The tightly controlled down regulation of DNMT3B exon 10 containing transcripts (and exon 10 encoded peptide) upon spontaneous differentiation of PSCs suggests that this DNMT3B splice isoform is characteristic of the pluripotent state. Alternatively spliced exons, and the proteins they encode, represent a vast untapped reservoir of novel biomarkers that can be used to develop superior reagents for stem cell research and to gain further insight into mechanisms controlling stem cell pluripotency

    Band gap temperature-dependence and exciton-like state in copper antimony sulphide, CuSbS2

    Get PDF
    The temperature-dependence of the band gap of the proposed photovoltaic absorber copper antimony sulphide (CuSbS2) has been studied by Fourier-transform infrared spectroscopy. The direct gap rises from 1.608 to 1.694 eV between 300 and 4.2 K. Below 200 K an exciton-like feature develops above the absorption edge at 1.82 eV. First-principles calculations evaluate band structure, band symmetries, and dipole selection rules, suggesting distinctly enhanced absorption for certain excitonic optical transitions. Striking consistency is seen between predicted dielectric and absorption spectra and those determined by ellipsometry, which reveal rapidly strengthening absorption passing 105 cmāˆ’1 at 2.2 eV. These results suggest beneficial photovoltaic performance due to strong optical absorption arising from unusually strong electronā€“hole interactions in polycrystalline CuSbS2 material
    • ā€¦
    corecore