805 research outputs found
Thermodynamics of phantom energy in the presence of a Reissner-Nordstrom black hole
In this paper, we study the validity of the generalized second law (GSL) in
phantom dominated universe in the presence of a Reissner-Nordstr\"{o}m (RN)
black hole. Our study is independent of the origin of the phantom like behavior
of the considered universe. We also discuss the GSL in the neighborhood of
transition from quintessence to phantom regime. We show that for a constant
equation of state parameter, the GSL may be satisfied provided that the
temperature is proportional to de Sitter temperature. It is shown that in
models with (only) a transition from quintessence to phantom regime the
generalized second law does not hold in the transition epoch. Next we show that
if the phantom energy has a chemical potential, then the GSL will hold if the
mass of black hole is above from a critical value.Comment: 5 pages, Accepted for publication in Astrophysics & Space Scienc
The Role of Purinergic Signaling in the Pathophysiology of Perinatal Hypoxic-Ischemic Encephalopathy
Perinatal hypoxic-ischemic encephalopathy (HIE), known as birth asphyxia, remains a major contributor to poor neurodevelopmental outcomes including cerebral palsy and seizures. One striking feature of HIE injury is a delayed progression of neuronal degeneration that spreads over time from the most severely damaged areas outward into neighboring undamaged regions. There is increasing evidence that these lesions act as sites of origin for waves of spreading depression (SD), a wave of neuronal and glial depolarization, that progressively enlarge the brain lesions. While the pathophysiology of SD is still under debate, there is increasing evidence that purinergic receptors in conjunction with connexin and pannexin 1 channels are necessary for sustained propagation of the waves and neuroinflammation. This review intends to discuss the relative contribution of purinergic signaling and connexin and pannexin 1 channels to trigger and spread SD waves leading to the development of progressive brain lesions under conditions of perinatal HIE
Dynamics of interacting phantom and quintessence dark energies
We present models, in which phantom energy interacts with two different types
of dark energies including variable modified Chaplygin gas (VMCG) and new
modified Chaplygin gas (NMCG). We then construct potentials for these cases. It
has been shown that the potential of the phantom field decreases from a higher
value with the evolution of the Universe.Comment: 7 pages, 6 figures, accepted for publication in Astrophysics and
Space Scienc
Promising prospective effects of Withania somnifera on broiler performance and carcass characteristics: A comprehensive review
Poultry production contributes markedly to bridging the global food gap. Many nations have limited the use of antibiotics as growth promoters due to increasing bacterial antibiotic tolerance/resistance, as well as the presence of antibiotic residues in edible tissues of the birds. Consequently, the world is turning to use natural alternatives to improve birds' productivity and immunity. Withania somnifera, commonly known as ashwagandha or winter cherry, is abundant in many countries of the world and is considered a potent medicinal herb because of its distinct chemical, medicinal, biological, and physiological properties. This plant exhibits antioxidant, cardioprotective, immunomodulatory, anti-aging, neuroprotective, antidiabetic, antimicrobial, antistress, antitumor, hepatoprotective, and growth-promoting activities. In poultry, dietary inclusion of W. somnifera revealed promising results in improving feed intake, body weight gain, feed efficiency, and feed conversion ratio, as well as reducing mortality, increasing livability, increasing disease resistance, reducing stress impacts, and maintaining health of the birds. This review sheds light on the distribution, chemical structure, and biological effects of W. somnifera and its impacts on poultry productivity, livability, carcass characteristics, meat quality, blood parameters, immune response, and economic efficiency
Lack of effect of cell-wall targeted antibacterials on biofilm formation and antifungal susceptibility of Candidaspecies
The use of central venous catheters (CVC) and broad-spectrum antibacterials are among the main risk factors for the development of candidemia in patients admitted to intensive care units (ICU). It is known that some antibacterials increase the resistance of these yeasts to azole antifungals. Thus, the aim of this research was to determine whether yeast present in CVC colonizations previously exposed to cell-wall targeted antibacterials benefit from a reduction in susceptibility to fluconazole and voriconazole, facilitating their ability to form biofilms. Candida albicans, C. tropicalis, C. glabrata, C. parapsilosis and C. guilhermondii were seeded into antibacterial (cefepime, meropenem, vancomycin, and piperacillin-tazobactam) gradient plates produced in Mueller-Hinton Agar. The susceptibility to fluconazole and voriconazole and the biofilm formation of the yeasts were tested before and after exposure to the antibacterials. None of the antibacterials exerted a significant effect on the in vitro susceptibility of the yeasts to the antifungal agents or on their ability to form biofilms. These results suggest that increased candidemia in ICU patients is not attributable to possible alterations in the yeasts, but is more likely caused by a weakening of the patient's general condition after long exposure to infection
Single Spin Asymmetry in Polarized Proton-Proton Elastic Scattering at GeV
We report a high precision measurement of the transverse single spin
asymmetry at the center of mass energy GeV in elastic
proton-proton scattering by the STAR experiment at RHIC. The was measured
in the four-momentum transfer squared range \GeVcSq, the region of a significant interference between the
electromagnetic and hadronic scattering amplitudes. The measured values of
and its -dependence are consistent with a vanishing hadronic spin-flip
amplitude, thus providing strong constraints on the ratio of the single
spin-flip to the non-flip amplitudes. Since the hadronic amplitude is dominated
by the Pomeron amplitude at this , we conclude that this measurement
addresses the question about the presence of a hadronic spin flip due to the
Pomeron exchange in polarized proton-proton elastic scattering.Comment: 12 pages, 6 figure
Evolution of the differential transverse momentum correlation function with centrality in Au+Au collisions at GeV
We present first measurements of the evolution of the differential transverse
momentum correlation function, {\it C}, with collision centrality in Au+Au
interactions at GeV. {\it C} exhibits a strong dependence
on collision centrality that is qualitatively similar to that of number
correlations previously reported. We use the observed longitudinal broadening
of the near-side peak of {\it C} with increasing centrality to estimate the
ratio of the shear viscosity to entropy density, , of the matter formed
in central Au+Au interactions. We obtain an upper limit estimate of
that suggests that the produced medium has a small viscosity per unit entropy.Comment: 7 pages, 4 figures, STAR paper published in Phys. Lett.
- …