1,434 research outputs found
Recommended from our members
Prompting Fab Yeast Surface Display Efficiency by ER Retention and Molecular Chaperon Co-expression.
For antibody discovery and engineering, yeast surface display (YSD) of antigen-binding fragments (Fabs) and coupled fluorescence activated cell sorting (FACS) provide intact paratopic conformations and quantitative analysis at the monoclonal level, and thus holding great promises for numerous applications. Using anti-TNFα mAbs Infliximab, Adalimumab, and its variants as model Fabs, this study systematically characterized complementary approaches for the optimization of Fab YSD. Results suggested that by using divergent promoter GAL1-GAL10 and endoplasmic reticulum (ER) signal peptides for co-expression of light chain and heavy chain-Aga2 fusion, assembled Fabs were functionally displayed on yeast cell surface with sigmoidal binding responses toward TNFα. Co-expression of a Hsp70 family molecular chaperone Kar2p and/or protein-disulfide isomerase (Pdi1p) significantly improved efficiency of functional display (defined as the ratio of cells displaying functional Fab over cells displaying assembled Fab). Moreover, fusing ER retention sequences (ERSs) with light chain also enhanced Fab display quality at the expense of display quantity, and the degree of improvements was correlated with the strength of ERSs and was more significant for Infliximab than Adalimumab. The feasibility of affinity maturation was further demonstrated by isolating a high affinity Fab clone from 1:103 or 1:105 spiked libraries
Lesinurad, a novel, oral compound for gout, acts to decrease serum uric acid through inhibition of urate transporters in the kidney.
BackgroundExcess body burden of uric acid promotes gout. Diminished renal clearance of uric acid causes hyperuricemia in most patients with gout, and the renal urate transporter (URAT)1 is important for regulation of serum uric acid (sUA) levels. The URAT1 inhibitors probenecid and benzbromarone are used as gout therapies; however, their use is limited by drug-drug interactions and off-target toxicity, respectively. Here, we define the mechanism of action of lesinurad (Zurampic®; RDEA594), a novel URAT1 inhibitor, recently approved in the USA and Europe for treatment of chronic gout.MethodssUA levels, fractional excretion of uric acid (FEUA), lesinurad plasma levels, and urinary excretion of lesinurad were measured in healthy volunteers treated with lesinurad. In addition, lesinurad, probenecid, and benzbromarone were compared in vitro for effects on urate transporters and the organic anion transporters (OAT)1 and OAT3, changes in mitochondrial membrane potential, and human peroxisome proliferator-activated receptor gamma (PPARγ) activity.ResultsAfter 6 hours, a single 200-mg dose of lesinurad elevated FEUA 3.6-fold (p < 0.001) and reduced sUA levels by 33 % (p < 0.001). At concentrations achieved in the clinic, lesinurad inhibited activity of URAT1 and OAT4 in vitro, did not inhibit GLUT9, and had no effect on ABCG2. Lesinurad also showed a low risk for mitochondrial toxicity and PPARγ induction compared to benzbromarone. Unlike probenecid, lesinurad did not inhibit OAT1 or OAT3 in the clinical setting.ConclusionThe pharmacodynamic effects and in vitro activity of lesinurad are consistent with inhibition of URAT1 and OAT4, major apical transporters for uric acid. Lesinurad also has a favorable selectivity and safety profile, consistent with an important role in sUA-lowering therapy for patients with gout
Recognition of specific sialoglycan structures by oral streptococci impacts the severity of endocardial infection.
Streptococcus gordonii and Streptococcus sanguinis are primary colonizers of the tooth surface. Although generally non-pathogenic in the oral environment, they are a frequent cause of infective endocarditis. Both streptococcal species express a serine-rich repeat surface adhesin that mediates attachment to sialylated glycans on mucin-like glycoproteins, but the specific sialoglycan structures recognized can vary from strain to strain. Previous studies have shown that sialoglycan binding is clearly important for aortic valve infections caused by some S. gordonii, but this process did not contribute to the virulence of a strain of S. sanguinis. However, these streptococci can bind to different subsets of sialoglycan structures. Here we generated isogenic strains of S. gordonii that differ only in the type and range of sialoglycan structures to which they adhere and examined whether this rendered them more or less virulent in a rat model of endocarditis. The findings indicate that the recognition of specific sialoglycans can either enhance or diminish pathogenicity. Binding to sialyllactosamine reduces the initial colonization of mechanically-damaged aortic valves, whereas binding to the closely-related trisaccharide sialyl T-antigen promotes higher bacterial densities in valve tissue 72 hours later. A surprising finding was that the initial attachment of streptococci to aortic valves was inversely proportional to the affinity of each strain for platelets, suggesting that binding to platelets circulating in the blood may divert bacteria away from the endocardial surface. Importantly, we found that human and rat platelet GPIbα (the major receptor for S. gordonii and S. sanguinis on platelets) display similar O-glycan structures, comprised mainly of a di-sialylated core 2 hexasaccharide, although the rat GPIbα has a more heterogenous composition of modified sialic acids. The combined results suggest that streptococcal interaction with a minor O-glycan on GPIbα may be more important than the over-all affinity for GPIbα for pathogenic effects
An experimental and theoretical study into the facile, homogenous (N-Heterocyclic Carbene)2-Pd(0) catalyzed diboration of internal and terminal alkynes
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Pd(ITMe)(2)(PhC CPh) acts as a highly reactive pre-catalyst in the unprecedented homogenous catalyzed diboration of terminal and internal alkynes, yielding a number of novel and known syn-1,2-diborylalkenes in a 100% stereoselective manner. DFT calculations suggest that a similar reaction pathway to that proposed for platinum phosphine analogues is followed, and that destabilization of key intermediates by the NHCs is vital to the overall success for the palladium-catalyzed B-B addition to alkynes.62074617467EPSRC Standard Research Student (DTG) [EP/L505109/1]Fundacao de Amparo a Pesquisa do Estado de Sao Paulo [2013/04813-6, 2015/11840-5, 2015/01491-3]Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP
The Community Ecology of Herbivore Regulation in an Agroecosystem: Lessons from Complex Systems
AbstractWhether an ecological community is controlled from above or below remains a popular framework that continues generating interesting research questions and takes on especially important meaning in agroecosystems. We describe the regulation from above of three coffee herbivores, a leaf herbivore (the green coffee scale, Coccus viridis), a seed predator (the coffee berry borer, Hypothenemus hampei), and a plant pathogen (the coffee rust disease, caused by Hemelia vastatrix) by various natural enemies, emphasizing the remarkable complexity involved. We emphasize the intersection of this classical question of ecology with the burgeoning field of complex systems, including references to chaos, critical transitions, hysteresis, basin or boundary collision, and spatial self-organization, all aimed at the applied question of pest control in the coffee agroecosystem
Characterization of an Ionization Readout Tile for nEXO
A new design for the anode of a time projection chamber, consisting of a
charge-detecting "tile", is investigated for use in large scale liquid xenon
detectors. The tile is produced by depositing 60 orthogonal metal
charge-collecting strips, 3~mm wide, on a 10~\si{\cm} 10~\si{\cm}
fused-silica wafer. These charge tiles may be employed by large detectors, such
as the proposed tonne-scale nEXO experiment to search for neutrinoless
double-beta decay. Modular by design, an array of tiles can cover a sizable
area. The width of each strip is small compared to the size of the tile, so a
Frisch grid is not required. A grid-less, tiled anode design is beneficial for
an experiment such as nEXO, where a wire tensioning support structure and
Frisch grid might contribute radioactive backgrounds and would have to be
designed to accommodate cycling to cryogenic temperatures. The segmented anode
also reduces some degeneracies in signal reconstruction that arise in
large-area crossed-wire time projection chambers. A prototype tile was tested
in a cell containing liquid xenon. Very good agreement is achieved between the
measured ionization spectrum of a Bi source and simulations that
include the microphysics of recombination in xenon and a detailed modeling of
the electrostatic field of the detector. An energy resolution =5.5\%
is observed at 570~\si{keV}, comparable to the best intrinsic ionization-only
resolution reported in literature for liquid xenon at 936~V/\si{cm}.Comment: 18 pages, 13 figures, as publishe
Processes in model slopes made of mixtures of wettable and water repellent sand: Implications for the initiation of debris flows in dry slopes
Debris flows in slopes initially dry, such as post-wildfire debris flows, are initiated by surface runoff and sediment bulking due to reduced infiltration. Soil water repellency, extreme dry soils, and loose, cohesionless materials influence their initiation. The exact link between these features, the resulting infiltration processes and the initiation mechanism of a debris flow remains unclear. Here, we examine the relation between soil particle wettability and slope processes in physical models. Flume experiments were conducted in 10% increments of mass ratios of wettable to water repellent sand, subjected to artificial rainfall with monitoring of soil water content, pore water pressure, sediment and water discharge and failure mode. To date, wettability was considered only for the water repellent end, because it reduces infiltration, enhancing surface runoff. This study demonstrates that slight wettability changes, in the full wettable to water repellent range, impact a variety of slope processes. The two extremes, fully wettable and water repellent gave opposite responses, retrogressive slides for infiltration-initiated in wettable sand and erosion by surface runoff in water repellent sand. The transition was dominated by surface runoff and preferential flow, yielding a combination of erosion and slides. From the tests, a continuous capping effect generated by water repellency was a necessary condition for erosion and sand bulking i.e., the generation of runoff-initiated debris flows. The sensitivity of the model slope response to artificial rainfall was particularly acute at high ratios of wettable to water repellent sand. For mixtures above a critical ratio of wettable to water repellent sand, the measurements with an index test revealed a fully wettable material despite differences in the infiltration, saturation and pore water pressure built-up trends. Implications for post-wildfire debris flows and debris flows in slopes initially dry in general are discussed.postprin
- …
