47 research outputs found

    A Conceptual Analysis of Autistic Masking: Understanding the Narrative of Stigma and the Illusion of Choice

    Get PDF
    Autistic masking is an emerging research area that focuses on understanding the conscious or unconscious suppression of natural autistic responses and adoption of alternatives across a range of domains. It is suggested that masking may relate to negative outcomes for autistic people, including late/missed diagnosis, mental health issues, burnout, and suicidality. This makes it essential to understand what masking is, and why it occurs. In this conceptual analysis, we suggest that masking is an unsurprising response to the deficit narrative and accompanying stigma that has developed around autism. We outline how classical social theory (i.e., social identity theory) can help us to understand how and why people mask by situating masking in the social context in which it develops. We draw upon the literature on stigma and marginalization to examine how masking might intersect with different aspects of identity (e.g., gender). We argue that although masking might contribute toward disparities in diagnosis, it is important that we do not impose gender norms and stereotypes by associating masking with a β€œfemale autism phenotype.” Finally we provide recommendations for future research, stressing the need for increased understanding of the different ways that autism may present in different people (e.g., internalizing and externalizing) and intersectionality. We suggest that masking is examined through a sociodevelopmental lens, taking into account factors that contribute toward the initial development of the mask and that drive its maintenance

    Antagonism of Tetherin Restriction of HIV-1 Release by Vpu Involves Binding and Sequestration of the Restriction Factor in a Perinuclear Compartment

    Get PDF
    The Vpu accessory protein promotes HIV-1 release by counteracting Tetherin/BST-2, an interferon-regulated restriction factor, which retains virions at the cell-surface. Recent reports proposed Ξ²-TrCP-dependent proteasomal and/or endo-lysosomal degradation of Tetherin as potential mechanisms by which Vpu could down-regulate Tetherin cell-surface expression and antagonize this restriction. In all of these studies, Tetherin degradation did not, however, entirely account for Vpu anti-Tetherin activity. Here, we show that Vpu can promote HIV-1 release without detectably affecting Tetherin steady-state levels or turnover, suggesting that Tetherin degradation may not be necessary and/or sufficient for Vpu anti-Tetherin activity. Even though Vpu did not enhance Tetherin internalization from the plasma membrane (PM), it did significantly slow-down the overall transport of the protein towards the cell-surface. Accordingly, Vpu expression caused a specific removal of cell-surface Tetherin and a re-localization of the residual pool of Tetherin in a perinuclear compartment that co-stained with the TGN marker TGN46 and Vpu itself. This re-localization of Tetherin was also observed with a Vpu mutant unable to recruit Ξ²-TrCP, suggesting that this activity is taking place independently from Ξ²-TrCP-mediated trafficking and/or degradation processes. We also show that Vpu co-immunoprecipitates with Tetherin and that this interaction involves the transmembrane domains of the two proteins. Importantly, this association was found to be critical for reducing cell-surface Tetherin expression, re-localizing the restriction factor in the TGN and promoting HIV-1 release. Overall, our results suggest that association of Vpu to Tetherin affects the outward trafficking and/or recycling of the restriction factor from the TGN and as a result promotes its sequestration away from the PM where productive HIV-1 assembly takes place. This mechanism of antagonism that results in TGN trapping is likely to be augmented by Ξ²-TrCP-dependent degradation, underlining the need for complementary and perhaps synergistic strategies to effectively counteract the powerful restrictive effects of human Tetherin

    Infection of Semen-Producing Organs by SIV during the Acute and Chronic Stages of the Disease

    Get PDF
    International audienceBACKGROUND: Although indirect evidence suggests the male genital tract as a possible source of persistent HIV shedding in semen during antiretroviral therapy, this phenomenon is poorly understood due to the difficulty of sampling semen-producing organs in HIV+ asymptomatic individuals. METHODOLOGY/PRINCIPAL FINDINGS: Using a range of molecular and cell biological techniques, this study investigates SIV infection within reproductive organs of macaques during the acute and chronic stages of the disease. We demonstrate for the first time the presence of SIV in the testes, epididymides, prostate and seminal vesicles as early as 14 days post-inoculation. This infection persists throughout the chronic stage and positively correlates with blood viremia. The prostate and seminal vesicles appear to be the most efficiently infected reproductive organs, followed by the epididymides and testes. Within the male genital tract, mostly T lymphocytes and a small number of germ cells harbour SIV antigens and RNA. In contrast to the other organs studied, the testis does not display an immune response to the infection. Testosteronemia is transiently increased during the early phase of the infection but spermatogenesis remains unaffected. CONCLUSIONS/SIGNIFICANCE: The present study reveals that SIV infection of the macaque male genital tract is an early event and that semen-producing organs display differential infection levels and immune responses. These results help elucidate the origin of HIV in semen and constitute an essential base to improving the design of antiretroviral therapies to eradicate virus from semen

    Proteomic Modeling for HIV-1 Infected Microglia-Astrocyte Crosstalk

    Get PDF
    Background: HIV-1-infected and immune competent brain mononuclear phagocytes (MP; macrophages and microglia) secrete cellular and viral toxins that affect neuronal damage during advanced disease. In contrast, astrocytes can affect disease by modulating the nervous system’s microenvironment. Interestingly, little is known how astrocytes communicate with MP to influence disease. Methods and Findings: MP-astrocyte crosstalk was investigated by a proteomic platform analysis using vesicular stomatitis virus pseudotyped HIV infected murine microglia. The microglial-astrocyte dialogue was significant and affected microglial cytoskeleton by modulation of cell death and migratory pathways. These were mediated, in part, through F-actin polymerization and filament formation. Astrocyte secretions attenuated HIV-1 infected microglia neurotoxicity and viral growth linked to the regulation of reactive oxygen species. Conclusions: These observations provide unique insights into glial crosstalk during disease by supporting astrocytemediated regulation of microglial function and its influence on the onset and progression of neuroAIDS. The results open new insights into previously undisclosed pathogenic mechanisms and open the potential for biomarker discovery an

    Cross-oncopanel study reveals high sensitivity and accuracy with overall analytical performance depending on genomic regions

    Get PDF
    BackgroundTargeted sequencing using oncopanels requires comprehensive assessments of accuracy and detection sensitivity to ensure analytical validity. By employing reference materials characterized by the U.S. Food and Drug Administration-led SEquence Quality Control project phase2 (SEQC2) effort, we perform a cross-platform multi-lab evaluation of eight Pan-Cancer panels to assess best practices for oncopanel sequencing.ResultsAll panels demonstrate high sensitivity across targeted high-confidence coding regions and variant types for the variants previously verified to have variant allele frequency (VAF) in the 5-20% range. Sensitivity is reduced by utilizing VAF thresholds due to inherent variability in VAF measurements. Enforcing a VAF threshold for reporting has a positive impact on reducing false positive calls. Importantly, the false positive rate is found to be significantly higher outside the high-confidence coding regions, resulting in lower reproducibility. Thus, region restriction and VAF thresholds lead to low relative technical variability in estimating promising biomarkers and tumor mutational burden.ConclusionThis comprehensive study provides actionable guidelines for oncopanel sequencing and clear evidence that supports a simplified approach to assess the analytical performance of oncopanels. It will facilitate the rapid implementation, validation, and quality control of oncopanels in clinical use.Peer reviewe

    Use of malaria rapid diagnostic tests by community health workers in Afghanistan: cluster randomised trial

    Get PDF
    Background: The World Health Organisation (WHO) recommends parasitological diagnosis of malaria before treatment, but use of malaria rapid diagnostic tests (mRDTs) by community health workers (CHWs) has not been fully tested within health services in south and central Asia. mRDTs could allow CHWs to diagnose malaria accurately, improving treatment of febrile illness. Methods: A cluster randomised trial in community health services was undertaken in Afghanistan. The primary outcome was the proportion of suspected malaria cases correctly treated for polymerase chain reaction (PCR)-confirmed malaria and PCR negative cases receiving no antimalarial drugs measured at the level of the patient. CHWs from 22 clusters (clinics) received standard training on clinical diagnosis and treatment of malaria; 11 clusters randomised to the intervention arm received additional training and were provided with mRDTs. CHWs enrolled cases of suspected malaria, and the mRDT results and treatments were compared to blind-read PCR diagnosis. Results: In total, 256 CHWs enrolled 2400 patients with 2154 (89.8%) evaluated. In the intervention arm, 75.3% (828/1099) were treated appropriately vs. 17.5% (185/1055) in the control arm (cluster adjusted risk ratio: 3.72, 95% confidence interval 2.40–5.77; p < 0.001). In the control arm, 85.9% (164/191) with confirmed Plasmodium vivax received chloroquine compared to 45.1% (70/155) in the intervention arm (p < 0.001). Overuse of chloroquine in the control arm resulted in 87.6% (813/928) of those with no malaria (PCR negative) being treated vs. 10.0% (95/947) in the intervention arm, p < 0.001. In the intervention arm, 71.4% (30/42) of patients with P. falciparum did not receive artemisinin-based combination therapy, partly because operational sensitivity of the RDTs was low (53.2%, 38.1–67.9). There was high concordance between recorded RDT result and CHW prescription decisions: 826/950 (87.0%) with a negative test were not prescribed an antimalarial. Co-trimoxazole was prescribed to 62.7% of malaria negative patients in the intervention arm and 15.0% in the control arm. Conclusions: While introducing mRDT reduced overuse of antimalarials, this action came with risks that need to be considered before use at scale: an appreciable proportion of malaria cases will be missed by those using current mRDTs. Higher sensitivity tests could be used to detect all cases. Overtreatment with antimalarial drugs in the control arm was replaced with increased antibiotic prescription in the intervention arm, resulting in a probable overuse of antibiotics. Trial registration: ClinicalTrials.gov, NCT01403350. Prospectively registered
    corecore