1,023 research outputs found

    Evaluating the Quality of Research into a Single Prognostic Biomarker: A Systematic Review and Meta-analysis of 83 Studies of C-Reactive Protein in Stable Coronary Artery Disease

    Get PDF
    Background Systematic evaluations of the quality of research on a single prognostic biomarker are rare. We sought to evaluate the quality of prognostic research evidence for the association of C-reactive protein (CRP) with fatal and nonfatal events among patients with stable coronary disease. Methods and Findings We searched MEDLINE (1966 to 2009) and EMBASE (1980 to 2009) and selected prospective studies of patients with stable coronary disease, reporting a relative risk for the association of CRP with death and nonfatal cardiovascular events. We included 83 studies, reporting 61,684 patients and 6,485 outcome events. No study reported a prespecified statistical analysis protocol; only two studies reported the time elapsed (in months or years) between initial presentation of symptomatic coronary disease and inclusion in the study. Studies reported a median of seven items (of 17) from the REMARK reporting guidelines, with no evidence of change over time. The pooled relative risk for the top versus bottom third of CRP distribution was 1.97 (95% confidence interval [CI] 1.78–2.17), with substantial heterogeneity (I2 = 79.5). Only 13 studies adjusted for conventional risk factors (age, sex, smoking, obesity, diabetes, and low-density lipoprotein [LDL] cholesterol) and these had a relative risk of 1.65 (95% CI 1.39–1.96), I2 = 33.7. Studies reported ten different ways of comparing CRP values, with weaker relative risks for those based on continuous measures. Adjusting for publication bias (for which there was strong evidence, Egger's p<0.001) using a validated method reduced the relative risk to 1.19 (95% CI 1.13–1.25). Only two studies reported a measure of discrimination (c-statistic). In 20 studies the detection rate for subsequent events could be calculated and was 31% for a 10% false positive rate, and the calculated pooled c-statistic was 0.61 (0.57–0.66). Conclusion Multiple types of reporting bias, and publication bias, make the magnitude of any independent association between CRP and prognosis among patients with stable coronary disease sufficiently uncertain that no clinical practice recommendations can be made. Publication of prespecified statistical analytic protocols and prospective registration of studies, among other measures, might help improve the quality of prognostic biomarker research

    Rs1888747 polymorphism in the FRMD3 gene, gene and protein expression: Role in diabetic kidney disease

    Get PDF
    © 2016 Buffon et al. Background: We carried out a case-control study in patients with type 2 diabetes mellitus (T2DM) to evaluate the association between seven single nucleotide polymorphisms (SNPs) previously described to be linked to diabetic kidney disease (DKD) in type 1 diabetes mellitus (T1DM). Additionally, we evaluated gene and protein expression related to the polymorphism associated with DKD. Methods: The association study included 1098 T2DM patients (718 with DKD and 380 without DKD). Out of the 13 polymorphisms associated with DKD in a previous study with T1DM, seven were chosen for evaluation in this sample: rs1888747, rs9521445, rs39075, rs451041, rs1041466, rs1411766 and rs6492208. The expression study included 91 patients who underwent nephrectomy. Gene expression was assessed by RT-qPCR and protein expression in kidney samples was quantified by western blot and it localization by immunohistochemistry. Results: The C/C genotype of rs1888747 SNP was associated with protection for DKD (OR = 0.6, 95 % CI 0.3-0.9; P = 0.022). None of the other SNPs were associated with DKD. rs1888747 is located near FRMD3 gene. Therefore, FRMD3 gene and protein expression were evaluated in human kidney tissue according to rs1888747 genotypes. Gene and protein expression were similar in subjects homozygous for the C allele and in those carrying the G allele. Conclusions: Replication of the association between rs1888747 SNP and DKD in a different population suggests that this link is not the result of chance. rs1888747 SNP is located at the FRMD3 gene, which is expressed in human kidney. Therefore, this gene is a candidate gene for DKD. However, in this study, no rs1888747 genotype or specific allele effect on gene and/or protein expression of the FRMD3 gene was demonstrated

    Across-Channel Timing Differences as a Potential Code for the Frequency of Pure Tones

    Get PDF
    When a pure tone or low-numbered harmonic is presented to a listener, the resulting travelling wave in the cochlea slows down at the portion of the basilar membrane (BM) tuned to the input frequency due to the filtering properties of the BM. This slowing is reflected in the phase of the response of neurons across the auditory nerve (AN) array. It has been suggested that the auditory system exploits these across-channel timing differences to encode the pitch of both pure tones and resolved harmonics in complex tones. Here, we report a quantitative analysis of previously published data on the response of guinea pig AN fibres, of a range of characteristic frequencies, to pure tones of different frequencies and levels. We conclude that although the use of across-channel timing cues provides an a priori attractive and plausible means of encoding pitch, many of the most obvious metrics for using that cue produce pitch estimates that are strongly influenced by the overall level and therefore are unlikely to provide a straightforward means for encoding the pitch of pure tones

    Changes of Mind in an Attractor Network of Decision-Making

    Get PDF
    Attractor networks successfully account for psychophysical and neurophysiological data in various decision-making tasks. Especially their ability to model persistent activity, a property of many neurons involved in decision-making, distinguishes them from other approaches. Stable decision attractors are, however, counterintuitive to changes of mind. Here we demonstrate that a biophysically-realistic attractor network with spiking neurons, in its itinerant transients towards the choice attractors, can replicate changes of mind observed recently during a two-alternative random-dot motion (RDM) task. Based on the assumption that the brain continues to evaluate available evidence after the initiation of a decision, the network predicts neural activity during changes of mind and accurately simulates reaction times, performance and percentage of changes dependent on difficulty. Moreover, the model suggests a low decision threshold and high incoming activity that drives the brain region involved in the decision-making process into a dynamical regime close to a bifurcation, which up to now lacked evidence for physiological relevance. Thereby, we further affirmed the general conformance of attractor networks with higher level neural processes and offer experimental predictions to distinguish nonlinear attractor from linear diffusion models

    Response characteristics in the apex of the gerbil cochlea studied through auditory nerve recordings

    Get PDF
    In this study, we analyze the processing of low-frequency sounds in the cochlear apex through responses of auditory nerve fibers (ANFs) that innervate the apex. Single tones and irregularly spaced tone complexes were used to evoke ANF responses in Mongolian gerbil. The spike arrival times were analyzed in terms of phase locking, peripheral frequency selectivity, group delays, and the nonlinear effects of sound pressure level (SPL). Phase locking to single tones was similar to that in cat. Vector strength was maximal for stimulus frequencies around 500 Hz, decreased above 1 kHz, and became insignificant above 4 to 5 kHz. We used the responses to tone complexes to determine amplitude and phase curves of ANFs having a characteristic frequency (CF) below 5 kHz. With increasing CF, amplitude curves gradually changed from broadly tuned and asymmetric with a steep low-frequency flank to more sharply tuned and asymmetric with a steep high-frequency flank. Over the same CF range, phase curves gradually changed from a concave-upward shape to a concave-downward shape. Phase curves consisted of two or three approximately straight segments. Group delay was analyzed separately for these segments. Generally, the largest group delay was observed near CF. With increasing SPL, most amplitude curves broadened, sometimes accompanied by a downward shift of best frequency, and group delay changed along the entire range of stimulus frequencies. We observed considerable across-ANF variation in the effects of SPL on both amplitude and phase. Overall, our data suggest that mechanical responses in the apex of the cochlea are considerably nonlinear and that these nonlinearities are of a different character than those known from the base of the cochlea

    Prioritizing Emerging Zoonoses in The Netherlands

    Get PDF
    Background: To support the development of early warning and surveillance systems of emerging zoonoses, we present a general method to prioritize pathogens using a quantitative, stochastic multi-criteria model, parameterized for the Netherlands. Methodology/Principal Findings: A risk score was based on seven criteria, reflecting assessments of the epidemiology and impact of these pathogens on society. Criteria were weighed, based on the preferences of a panel of judges with a background in infectious disease control. Conclusions/Significance: Pathogens with the highest risk for the Netherlands included pathogens in the livestock reservoir with a high actual human disease burden (e.g. Campylobacter spp., Toxoplasma gondii, Coxiella burnetii) or a low current but higher historic burden (e.g. Mycobacterium bovis), rare zoonotic pathogens in domestic animals with severe disease manifestations in humans (e.g. BSE prion, Capnocytophaga canimorsus) as well as arthropod-borne and wildlife associated pathogens which may pose a severe risk in future (e.g. Japanese encephalitis virus and West-Nile virus). These agents are key targets for development of early warning and surveillance.Infrastructures, Systems and ServicesTechnology, Policy and Managemen

    Human Herpesvirus Replication and Abnormal CD8+ T Cell Activation and Low CD4+ T Cell Counts in Antiretroviral-Suppressed HIV-Infected Patients

    Get PDF
    Most HIV-infected patients receiving virologically suppressive antiretroviral therapy continue to have abnormal, generalized T cell activation. We explored whether the degree of ongoing cytomegalovirus (CMV), Epstein-Barr virus (EBV) and Kaposi's sarcoma herpesvirus (KSHV) replication was associated with higher virus-specific T cell activation and the failure to achieve normal absolute CD4+ T cell counts in the face of long-term suppressive antiretroviral therapy.Longitudinally collected PBMC and saliva specimens obtained from HIV-infected patients on effective antiretroviral therapy for at least one year (plasma HIV RNA <75 copies/mL) were examined using a multiplex CMV, EBV and KSHV DNA PCR assay. Eleven cases were chosen who had CD8+ T cell CD38+HLA-DR+ expression >10% and plateau absolute CD4+ T cell counts <500 cells/microL. Five controls from the same study had CD8+ T cell CD38 expression <10% and plateau absolute CD4+ T cell counts >500 cells/microL.Among all subjects combined, 18% of PMBC samples were positive for CMV DNA, and 27%, 73% and 24% of saliva samples were positive for CMV, EBV and KSHV DNA, respectively. No significant differences or trends were observed between cases and controls in proportions of all CMV, EBV or KSHV DNA positive specimens, proportions of subjects in each group that intermittently or continuously shed CMV, EBV or KSHV DNA in saliva, or the median number of genome copies of CMV, EBV and KSHV DNA in saliva. Overall, number of genome copies in saliva were lower for KSHV than for CMV and lower for CMV than for EBV. Although replication of CMV, EBV and KSHV persists in many antiretroviral-suppressed, HIV-infected patients, we observed no evidence in this pilot case-control study that the magnitude of such human herpesvirus replication is associated with abnormally increased CD8+ T cell activation and sub-normal plateau absolute CD4+ T cell counts following virologically suppressive antiretroviral therapy

    Knowledge of causes, clinical features and diagnosis of common zoonoses among medical practitioners in Tanzania

    Get PDF
    Many factors have been mentioned as contributing to under-diagnosis and under-reporting of zoonotic diseases particularly in the sub-Sahara African region. These include poor disease surveillance coverage, poor diagnostic capacity, the geographical distribution of those most affected and lack of clear strategies to address the plight of zoonotic diseases. The current study investigates the knowledge of medical practitioners of zoonotic diseases as a potential contributing factor to their under-diagnosis and hence under-reporting. The study was designed as a cross-sectional survey. Semi-structured open-ended questionnaire was administered to medical practitioners to establish the knowledge of anthrax, rabies, brucellosis, trypanosomiasis, echinococcosis and bovine tuberculosis in selected health facilities within urban and rural settings in Tanzania between April and May 2005. Frequency data were analyzed using likelihood ratio chi-square in Minitab version 14 to compare practitioners' knowledge of transmission, clinical features and diagnosis of the zoonoses in the two settings. For each analysis, likelihood ratio chi-square p-value of less than 0.05 was considered to be significant. Fisher's exact test was used where expected results were less than five. Medical practitioners in rural health facilities had poor knowledge of transmission of sleeping sickness and clinical features of anthrax and rabies in humans compared to their urban counterparts. In both areas the practitioners had poor knowledge of how echinococcosis is transmitted to humans, clinical features of echinococcosis in humans, and diagnosis of bovine tuberculosis in humans. Knowledge of medical practitioners of zoonotic diseases could be a contributing factor to their under-diagnosis and under-reporting in Tanzania. Refresher courses on zoonotic diseases should be conducted particularly to practitioners in rural areas. More emphasis should be put on zoonotic diseases in teaching curricula of medical practitioners' training institutions in Tanzania to improve the diagnosis, reporting and control of zoonotic diseases. Veterinary and medical collaboration should be strengthened to enable more effective control of zoonotic diseases in Tanzania

    Evolution and Optimality of Similar Neural Mechanisms for Perception and Action during Search

    Get PDF
    A prevailing theory proposes that the brain's two visual pathways, the ventral and dorsal, lead to differing visual processing and world representations for conscious perception than those for action. Others have claimed that perception and action share much of their visual processing. But which of these two neural architectures is favored by evolution? Successful visual search is life-critical and here we investigate the evolution and optimality of neural mechanisms mediating perception and eye movement actions for visual search in natural images. We implement an approximation to the ideal Bayesian searcher with two separate processing streams, one controlling the eye movements and the other stream determining the perceptual search decisions. We virtually evolved the neural mechanisms of the searchers' two separate pathways built from linear combinations of primary visual cortex receptive fields (V1) by making the simulated individuals' probability of survival depend on the perceptual accuracy finding targets in cluttered backgrounds. We find that for a variety of targets, backgrounds, and dependence of target detectability on retinal eccentricity, the mechanisms of the searchers' two processing streams converge to similar representations showing that mismatches in the mechanisms for perception and eye movements lead to suboptimal search. Three exceptions which resulted in partial or no convergence were a case of an organism for which the targets are equally detectable across the retina, an organism with sufficient time to foveate all possible target locations, and a strict two-pathway model with no interconnections and differential pre-filtering based on parvocellular and magnocellular lateral geniculate cell properties. Thus, similar neural mechanisms for perception and eye movement actions during search are optimal and should be expected from the effects of natural selection on an organism with limited time to search for food that is not equi-detectable across its retina and interconnected perception and action neural pathways
    • …
    corecore