16 research outputs found

    Transcriptomic Analysis of Toxoplasma Development Reveals Many Novel Functions and Structures Specific to Sporozoites and Oocysts

    Get PDF
    Sexual reproduction of Toxoplasma gondii occurs exclusively within enterocytes of the definitive felid host. The resulting immature oocysts are excreted into the environment during defecation, where in the days following, they undergo a complex developmental process. Within each oocyst, this culminates in the generation of two sporocysts, each containing 4 sporozoites. A single felid host is capable of shedding millions of oocysts, which can survive for years in the environment, are resistant to most methods of microbial inactivation during water-treatment and are capable of producing infection in warm-blooded hosts at doses as low as 1–10 ingested oocysts. Despite its extremely interesting developmental biology and crucial role in initiating an infection, almost nothing is known about the oocyst stage beyond morphological descriptions. Here, we present a complete transcriptomic analysis of the oocyst from beginning to end of its development. In addition, and to identify genes whose expression is unique to this developmental form, we compared the transcriptomes of developing oocysts with those of in vitro-derived tachyzoites and in vivo-derived bradyzoites. Our results reveal many genes whose expression is specifically up- or down-regulated in different developmental stages, including many genes that are likely critical to oocyst development, wall formation, resistance to environmental destruction and sporozoite infectivity. Of special note is the up-regulation of genes that appear “off” in tachyzoites and bradyzoites but that encode homologues of proteins known to serve key functions in those asexual stages, including a novel pairing of sporozoite-specific paralogues of AMA1 and RON2, two proteins that have recently been shown to form a crucial bridge during tachyzoite invasion of host cells. This work provides the first in-depth insight into the development and functioning of one of the most important but least studied stages in the Toxoplasma life cycle

    Involvement in surface antigen expression by a moonlighting FG-repeat nucleoporin in trypanosomes

    Get PDF
    Components of the nuclear periphery coordinate a multitude of activities, including macromolecular transport, cell-cycle progression, and chromatin organization. Nuclear pore complexes (NPCs) mediate nucleocytoplasmic transport, mRNA processing, and transcriptional regulation, and NPC components can define regions of high transcriptional activity in some organisms at the nuclear periphery and nucleoplasm. Lineage-specific features underpin several core nuclear functions and in trypanosomatids, which branched very early from other eukaryotes, unique protein components constitute the lamina, kinetochores, and parts of the NPCs. Here we describe a phenylalanine-glycine (FG)-repeat nucleoporin, TbNup53b, that has dual localizations within the nucleoplasm and NPC. In addition to association with nucleoporins, TbNup53b interacts with a known trans-splicing component, TSR1, and has a role in controlling expression of surface proteins including the nucleolar periphery-located, procyclin genes. Significantly, while several nucleoporins are implicated in intranuclear transcriptional regulation in metazoa, TbNup53b appears orthologous to components of the yeast/human Nup49/Nup58 complex, for which no transcriptional functions are known. These data suggest that FG-Nups are frequently co-opted to transcriptional functions during evolution and extend the presence of FG-repeat nucleoporin control of gene expression to trypanosomes, suggesting that this is a widespread and ancient eukaryotic feature, as well as underscoring once more flexibility within nucleoporin function

    Micronutrient fortification of food and its impact on woman and child health: A systematic review

    Get PDF
    Background: Vitamins and minerals are essential for growth and metabolism. The World Health Organization estimates that more than 2 billion people are deficient in key vitamins and minerals. Groups most vulnerable to these micronutrient deficiencies are pregnant and lactating women and young children, given their increased demands. Food fortification is one of the strategies that has been used safely and effectively to prevent vitamin and mineral deficiencies.Methods: A comprehensive search was done to identify all available evidence for the impact of fortification interventions. Studies were included if food was fortified with a single, dual or multiple micronutrients and impact of fortification was analyzed on the health outcomes and relevant biochemical indicators of women and children. We performed a meta-analysis of outcomes using Review Manager Software version 5.1.Results: Our systematic review identified 201 studies that we reviewed for outcomes of relevance. Fortification for children showed significant impacts on increasing serum micronutrient concentrations. Hematologic markers also improved, including hemoglobin concentrations, which showed a significant rise when food was fortified with vitamin A, iron and multiple micronutrients. Fortification with zinc had no significant adverse impact on hemoglobin levels. Multiple micronutrient fortification showed non-significant impacts on height for age, weight for age and weight for height Z-scores, although they showed positive trends. The results for fortification in women showed that calcium and vitamin D fortification had significant impacts in the post-menopausal age group. Iron fortification led to a significant increase in serum ferritin and hemoglobin levels in women of reproductive age and pregnant women. Folate fortification significantly reduced the incidence of congenital abnormalities like neural tube defects without increasing the incidence of twinning. The number of studies pooled for zinc and multiple micronutrients for women were few, though the evidence suggested benefit. There was a dearth of evidence for the impact of fortification strategies on morbidity and mortality outcomes in women and children.Conclusion: Fortification is potentially an effective strategy but evidence from the developing world is scarce. Programs need to assess the direct impact of fortification on morbidity and mortality

    The Digital Brain Bank, an open access platform for post-mortem imaging datasets

    No full text
    Post-mortem magnetic resonance imaging (MRI) provides the opportunity to acquire high-resolution datasets to investigate neuroanatomy and validate the origins of image contrast through microscopy comparisons. We introduce the Digital Brain Bank (open.win.ox.ac.uk/DigitalBrainBank), a data release platform providing open access to curated, multimodal post-mortem neuroimaging datasets. Datasets span three themes—Digital Neuroanatomist: datasets for detailed neuroanatomical investigations; Digital Brain Zoo: datasets for comparative neuroanatomy; and Digital Pathologist: datasets for neuropathology investigations. The first Digital Brain Bank data release includes 21 distinctive whole-brain diffusion MRI datasets for structural connectivity investigations, alongside microscopy and complementary MRI modalities. This includes one of the highest-resolution whole-brain human diffusion MRI datasets ever acquired, whole-brain diffusion MRI in fourteen nonhuman primate species, and one of the largest post-mortem whole-brain cohort imaging studies in neurodegeneration. The Digital Brain Bank is the culmination of our lab’s investment into post-mortem MRI methodology and MRI-microscopy analysis techniques. This manuscript provides a detailed overview of our work with post-mortem imaging to date, including the development of diffusion MRI methods to image large post-mortem samples, including whole, human brains. Taken together, the Digital Brain Bank provides cross-scale, cross-species datasets facilitating the incorporation of post-mortem data into neuroimaging studies

    Organization and chemical neuroanatomy of the African elephant (Loxodonta africana) hippocampus

    No full text
    Elephants are thought to possess excellent long-term spatial–temporal and social memory, both memory types being at least in part hippocampus dependent. Although the hippocampus has been extensively studied in common laboratory mammalian species and humans, much less is known about comparative hippocampal neuroanatomy, and specifically that of the elephant. Moreover, the data available regarding hippocampal size of the elephant are inconsistent. The aim of the current study was to re-examine hippocampal size and provide a detailed neuroanatomical description of the hippocampus in the African elephant. In order to examine the hippocampal size the perfusion-fixed brains of three wild-caught adult male African elephants, aged 20–30 years, underwent MRI scanning. For the neuroanatomical description brain sections containing the hippocampus were stained for Nissl, myelin, calbindin, calretinin, parvalbumin and doublecortin. This study demonstrates that the elephant hippocampus is not unduly enlarged, nor specifically unusual in its internal morphology. The elephant hippocampus has a volume of 10.84 ± 0.33 cm³ and is slightly larger than the human hippocampus (10.23 cm3). Histological analysis revealed the typical trilaminated architecture of the dentate gyrus (DG) and the cornu ammonis (CA), although the molecular layer of the dentate gyrus appears to have supernumerary sublaminae compared to other mammals. The three main architectonic fields of the cornu ammonis (CA1, CA2, and CA3) could be clearly distinguished. Doublecortin immunostaining revealed the presence of adult neurogenesis in the elephant hippocampus. Thus, the elephant exhibits, for the most part, what might be considered a typically mammalian hippocampus in terms of both size and architectur

    Standard immunosuppressive therapy of immune-mediated glomerular diseases

    No full text
    Glomerulonephritis (GN) accounts for 10%-20% of the total incident cases of end stage renal disease (ESRD), and is the third most common cause of ESRD after diabetes and hypertension in western countries. The pathogenesis of glomerulonephritis is prevalently immune mediated: humoral and cell-mediated immunity are involved, although the rationale for an etiological treatment is still lacking. In the last forty years, empirical treatment based upon the use of corticosteroids and/or immunosuppressive drugs have obtained excellent results in improving survival of both the patient and the kidney. Almost 95% of children affected by minimal change disease (MCD) achieve remission of proteinuria within 4 to 8. weeks of prednisone administration. In adults with focal segmental glomerulosclerosis (FSGS), prednisone induces complete or partial remission in the majority of patients, but a longer period of steroid treatment or the combination of calcineurin inhibitors or cytotoxic drugs can be needed. A percentage of 65%-70% of patients with idiopathic membranous nephropathy (MN) reach complete or partial remission with a 6-month course of therapy alternating glucocorticoids with alkylating agents. Glucocorticoids plus cyclophosphamide, and, on occasion, plasmapheresis are effective in 70%-90% of patients with ANCA-associated vasculitis (AAV). Fifty percent of responders relapse within the 3-5. years and currently, the mortality of AAV at 1. year exceeds 15%.This article is aimed to analyze the risk-to-benefit balance of steroids and conventional immunosuppressive regimens, focusing, for a sake of brevity, on idiopathic nephrotic syndrome (INS) and ANCA associated vasculitis
    corecore