180 research outputs found

    Shared Information -- New Insights and Problems in Decomposing Information in Complex Systems

    Full text link
    How can the information that a set X1,...,Xn{X_{1},...,X_{n}} of random variables contains about another random variable SS be decomposed? To what extent do different subgroups provide the same, i.e. shared or redundant, information, carry unique information or interact for the emergence of synergistic information? Recently Williams and Beer proposed such a decomposition based on natural properties for shared information. While these properties fix the structure of the decomposition, they do not uniquely specify the values of the different terms. Therefore, we investigate additional properties such as strong symmetry and left monotonicity. We find that strong symmetry is incompatible with the properties proposed by Williams and Beer. Although left monotonicity is a very natural property for an information measure it is not fulfilled by any of the proposed measures. We also study a geometric framework for information decompositions and ask whether it is possible to represent shared information by a family of posterior distributions. Finally, we draw connections to the notions of shared knowledge and common knowledge in game theory. While many people believe that independent variables cannot share information, we show that in game theory independent agents can have shared knowledge, but not common knowledge. We conclude that intuition and heuristic arguments do not suffice when arguing about information.Comment: 20 page

    Hydrothermal activity, functional diversity and chemoautotrophy are major drivers of seafloor carbon cycling

    Get PDF
    Hydrothermal vents are highly dynamic ecosystems and are unusually energy rich in the deep-sea. In situ hydrothermal-based productivity combined with sinking photosynthetic organic matter in a soft-sediment setting creates geochemically diverse environments, which remain poorly studied. Here, we use comprehensive set of new and existing field observations to develop a quantitative ecosystem model of a deep-sea chemosynthetic ecosystem from the most southerly hydrothermal vent system known. We find evidence of chemosynthetic production supplementing the metazoan food web both at vent sites and elsewhere in the Bransfield Strait. Endosymbiont-bearing fauna were very important in supporting the transfer of chemosynthetic carbon into the food web, particularly to higher trophic levels. Chemosynthetic production occurred at all sites to varying degrees but was generally only a small component of the total organic matter inputs to the food web, even in the most hydrothermally active areas, owing in part to a low and patchy density of vent-endemic fauna. Differences between relative abundance of faunal functional groups, resulting from environmental variability, were clear drivers of differences in biogeochemical cycling and resulted in substantially different carbon processing patterns between habitats

    Site-specific labeling of nucleotides for making RNA for high resolution NMR studies using an E. coli strain disabled in the oxidative pentose phosphate pathway

    Get PDF
    Escherichia coli (E. coli) is a versatile organism for making nucleotides labeled with stable isotopes (13C, 15N, and/or 2H) for structural and molecular dynamics characterizations. Growth of a mutant E. coli strain deficient in the pentose phosphate pathway enzyme glucose-6-phosphate dehydrogenase (K10-1516) on 2-13C-glycerol and 15N-ammonium sulfate in Studier minimal medium enables labeling at sites useful for NMR spectroscopy. However, 13C-sodium formate combined with 13C-2-glycerol in the growth media adds labels to new positions. In the absence of labeled formate, both C5 and C6 positions of the pyrimidine rings are labeled with minimal multiplet splitting due to 1JC5C6 scalar coupling. However, the C2/C8 sites within purine rings and the C1â€Č/C3â€Č/C5â€Č positions within the ribose rings have reduced labeling. Addition of 13C-labeled formate leads to increased labeling at the base C2/C8 and the ribose C1â€Č/C3â€Č/C5â€Č positions; these new specific labels result in two- to three-fold increase in the number of resolved resonances. This use of formate and 15N-ammonium sulfate promises to extend further the utility of these alternate site specific labels to make labeled RNA for downstream biophysical applications such as structural, dynamics and functional studies of interesting biologically relevant RNAs

    Observation and branching fraction measurement of the decay Ξb- → Λ0 bπ -

    Get PDF

    Precision measurement of CP\it{CP} violation in the penguin-mediated decay Bs0→ϕϕB_s^{0}\rightarrow\phi\phi

    Get PDF
    A flavor-tagged time-dependent angular analysis of the decay Bs0→ϕϕB_s^{0}\rightarrow\phi\phi is performed using pppp collision data collected by the LHCb experiment at % at s=13\sqrt{s}=13 TeV, the center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 6 fb^{-1}. The CP\it{CP}-violating phase and direct CP\it{CP}-violation parameter are measured to be ϕssˉs=−0.042±0.075±0.009\phi_{s\bar{s}s} = -0.042 \pm 0.075 \pm 0.009 rad and ∣λ∣=1.004±0.030±0.009|\lambda|=1.004\pm 0.030 \pm 0.009 , respectively, assuming the same values for all polarization states of the ϕϕ\phi\phi system. In these results, the first uncertainties are statistical and the second systematic. These parameters are also determined separately for each polarization state, showing no evidence for polarization dependence. The results are combined with previous LHCb measurements using pppp collisions at center-of-mass energies of 7 and 8 TeV, yielding ϕssˉs=−0.074±0.069\phi_{s\bar{s}s} = -0.074 \pm 0.069 rad and ∣lambda∣=1.009±0.030|lambda|=1.009 \pm 0.030. This is the most precise study of time-dependent CP\it{CP} violation in a penguin-dominated BB meson decay. The results are consistent with CP\it{CP} symmetry and with the Standard Model predictions.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2023-001.html (LHCb public pages

    Measurement of the Λb0→Λ(1520)ÎŒ+Ό−\Lambda_{b}^{0}\to \Lambda(1520) \mu^{+}\mu^{-} differential branching fraction

    Get PDF
    The branching fraction of the rare decay Λb0→Λ(1520)ÎŒ+Ό−\Lambda_{b}^{0}\to \Lambda(1520) \mu^{+}\mu^{-} is measured for the first time, in the squared dimuon mass intervals, q2q^2, excluding the J/ψJ/\psi and ψ(2S)\psi(2S) regions. The data sample analyzed was collected by the LHCb experiment at center-of-mass energies of 7, 8, and 13 TeV, corresponding to a total integrated luminosity of $9\ \mathrm{fb}^{-1}.Theresultinthehighest. The result in the highest q^{2}interval, interval, q^{2} >15.0\ \mathrm{GeV}^2/c^4$, where theoretical predictions have the smallest model dependence, agrees with the predictions.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-050.html (LHCb public pages

    TESS Hunt for Young and Maturing Exoplanets (THYME): A Planet in the 45 Myr Tucana–Horologium Association

    Get PDF
    Young exoplanets are snapshots of the planetary evolution process. Planets that orbit stars in young associations are particularly important because the age of the planetary system is well constrained. We present the discovery of a transiting planet larger than Neptune but smaller than Saturn in the 45 Myr Tucana–Horologium young moving group. The host star is a visual binary, and our follow-up observations demonstrate that the planet orbits the G6V primary component, DS Tuc A (HD 222259A, TIC 410214986). We first identified transits using photometry from the Transiting Exoplanet Survey Satellite (TESS; alerted as TOI 200.01). We validated the planet and improved the stellar parameters using a suite of new and archival data, including spectra from Southern Astrophysical Research/Goodman, South African Extremely Large Telescope/High Resolution Spectrograph and Las Cumbres Observatories/Network of Robotic Echelle Spectrographs; transit photometry from Spitzer; and deep adaptive optics imaging from Gemini/Gemini Planet Imager. No additional stellar or planetary signals are seen in the data. We measured the planetary parameters by simultaneously modeling the photometry with a transit model and a Gaussian process to account for stellar variability. We determined that the planetary radius is 5.70 ± 0.17 R ⊕ and that the orbital period is 8.1 days. The inclination angles of the host star’s spin axis, the planet’s orbital axis, and the visual binary’s orbital axis are aligned within 15° to within the uncertainties of the relevant data. DS Tuc Ab is bright enough (V = 8.5) for detailed characterization using radial velocities and transmission spectroscopy
    • 

    corecore