820 research outputs found

    Preliminary study of a radiantly heated fluidized bed for the production of high purity silicon

    Get PDF
    The preparation of very pure silicon from silane (SIH4) using radiant heating of the hot silicon particles of a fluidized bed is discussed. The fraction of electrical energy supplied to the heater which is actually absorbed by the particles and the heat transfer coefficient between the hot bed and the cool distributor plate were investigated. The experimental design is presented and the results of the study are summarized

    Measurement of adsorption of a single component from the liquid phase : modelling investigation and sensitivity analysis

    Get PDF
    In this work, we consider an alternative approach for the measurement of adsorption from the liquid phase. Consider a mixture consisting of a non-adsorbed component (B) and an adsorbed component (A) present at some low concentration. Initially, a feed of component B only flows through a column packed with an adsorbent. Then, the feed is switched to the mixture of A and B. As soon as the mixture enters the column, there will be a reduction in the outlet flow rate as component A leaves the liquid phase and passes into the adsorbed phase. There are three stages to this work. The first is to develop overall and component balances to show how the amount adsorbed of component A can be determined from the variation in the column outlet flow rate. The second is to determine the actual variation in the column outlet flow rate for both plug flow and axial-dispersed plug flow. The final stage is to consider the suitability of a gravity-fed system to deliver the feed to the column. An analysis of the results shows that the experimental arrangement should be able to accurately monitor adsorption from the liquid phase where the mass fraction of the solute is of the order of 1%: the limiting experimental factor is how constant the volumetric flow rate of the liquid feed can be maintained

    Design and Performance of a Pilot Scale High-Gradient Magnetic Filter Using a Mandhala Magnet and Its Application for Soy-Whey Protein Purification

    Get PDF
    The scalability of economic high-gradient magnetic separation (HGMS) technology is essential in order to demonstrate the feasibility of the concept. One of the means is the application of a permanent magnet with a hollow cylindrical volume made from identical magnetic blocks (e.g., Mandhala), another is the development of a High-Gradient Magnetic Filter (HGMF) with a new backwashing concept. The Mandhala (Magnetic Arrangement for Novel Discrete Halbach Layout) magnet produces a dipolar transversal magnetic field in the center of the bore and its usable volume is easily adaptable to the separation device\u27s extensions. The chapter presents the pilot scale design of the Mandhala magnet and the HGMF as well as experimental performance tests using a water-magnetic beads model system. Subsequently, experiments using soy-whey as a real feedstock demonstrate the purification of the protein Bowman-Birk inhibitor (BBI), an agent against cancer and multiples sclerosis

    Computational fluid dynamics modelling of residence times in vegetated stormwater ponds

    Get PDF
    Experimental data characterising dispersion within Typha latifolia were previously collected in a laboratory setting. This mixing characterisation was combined with previously proposed computational fluid dynamics modelling approaches to predict residence time distributions for vegetated stormwater treatment pond layouts (including a wetland) derived from Highways England design guidance. The results showed that the presence of vegetation resulted in residence times closer to plug flow, indicating significant improvements in stormwater treatment capability. The new modelling approach reflects changes in residence time due to mixing within the vegetation, but it also suggests that it is more important to include vegetation within the model in the correct location than it is to accurately characterise it. Estimates of hydraulic efficiency suggest that fully vegetated stormwater ponds such as wetlands should function well as a treatment device, but more typical ponds with clear water need to be designed to be between 50% and 100% larger than their nominal residence times would suggest when designed against treatment criteria

    Deconvolving Smooth Residence Time Distributions from Raw Solute Transport Data

    Get PDF
    A residence time distribution (RTD) provides a complete model of longitudinal mixing effects that can be robustly derived from experimental solute transport data. Maximum entropy deconvolution has been shown to recover RTDs from preprocessed laboratory data. However, data preprocessing is time consuming and may introduce errors. Assuming data were recorded using sensors with a linear response, it should be possible to deconvolve raw data without preprocessing. This paper uses synthetically generated raw data to demonstrate that the quality of the deconvolved RTD remains satisfactory when preprocessing steps involving data cropping or calibration are skipped. Provided noise levels are relatively low, filtering steps may also be omitted. However, a rough subtraction of background concentration is recommended as a minimal preprocessing step. Deconvolved RTDs often include small-scale fluctuations that are inconsistent with a well-mixed fully turbulent system. These are believed to be associated with oversampling and/or unsuitable interpolation functions used in the maximum entropy deconvolution process. This paper describes a new interpolation function—linear interpolation with an automatic moving average (LAMA)—and demonstrates that, in combination with fewer sample points (e.g., 20), it enables smoother RTDs to be generated. The two improvements, to deconvolve raw data and to generate smoother RTDs, have been validated with experimental data. Raw solute transport traces collected from a river were deconvolved after background subtraction. The deconvolved RTDs compare favorably with those generated from the more traditional advection-dispersion equation (ADE) and aggregated dead zone (ADZ) models, but provide more detail of mixing processes. A laboratory manhole solute transport data set was deconvolved with and without preprocessing using 40 sample points and linear interpolation. The raw data were also deconvolved using 20 sample points and LAMA interpolation. The two sets of RTDs deconvolved from the raw data show the same mixing trends as those deconvolved from preprocessed data. However, those deconvolved with LAMA interpolation and 20 sample points are significantly smoother

    Solid oxide fuel cell reactor analysis and optimisation through a novel multi-scale modelling strategy

    Get PDF
    The simulation of a solid oxide fuel cell (SOFC) that incorporates a detailed user-developed model was performed within the commercial flowsheet simulator Aspen Plus. It allows modification of the SOFC's governing equations, as well as the configuration of the cell's fuel-air flow pattern at the flowsheet level. Initially, the dynamic behaviour of single compartment of a cell was examined with a 0D model, which became the building block for more complex SOFC configurations. Secondly, a sensitivity analysis was performed at the channel (1D) scale for different flow patterns. Thirdly, the effect of fuel and air flow rates on the predominant distributed variables of a cell was tested on a 2D assembly. Finally, an optimisation study was carried out on the 2D cell, leading to a robust, optimal air distribution profile that minimises the internal temperature gradient. This work forms the foundation of future stack and system scale studies
    • …
    corecore