518 research outputs found
Water Condensation Zones around Main Sequence Stars
Understanding the set of conditions that allow rocky planets to have liquid
water on their surface -- in the form of lakes, seas or oceans -- is a major
scientific step to determine the fraction of planets potentially suitable for
the emergence and development of life as we know it on Earth. This effort is
also necessary to define and refine the so-called "Habitable Zone" (HZ) in
order to guide the search for exoplanets likely to harbor remotely detectable
life forms. Until now, most numerical climate studies on this topic have
focused on the conditions necessary to maintain oceans, but not to form them in
the first place. Here we use the three-dimensional Generic Planetary Climate
Model (PCM), historically known as the LMD Generic Global Climate Model (GCM),
to simulate water-dominated planetary atmospheres around different types of
Main-Sequence stars. The simulations are designed to reproduce the conditions
of early ocean formation on rocky planets due to the condensation of the
primordial water reservoir at the end of the magma ocean phase. We show that
the incoming stellar radiation (ISR) required to form oceans by condensation is
always drastically lower than that required to vaporize oceans. We introduce a
Water Condensation Limit, which lies at significantly lower ISR than the inner
edge of the HZ calculated with three-dimensional numerical climate simulations.
This difference is due to a behavior change of water clouds, from low-altitude
dayside convective clouds to high-altitude nightside stratospheric clouds.
Finally, we calculated transit spectra, emission spectra and thermal phase
curves of TRAPPIST-1b, c and d with H2O-rich atmospheres, and compared them to
CO2 atmospheres and bare rock simulations. We show using these observables that
JWST has the capability to probe steam atmospheres on low-mass planets, and
could possibly test the existence of nightside water clouds.Comment: Accepted for publication in Astronomy & Astrophysic
Exoplanet phase curves: observations and theory
Phase curves are the best technique to probe the three dimensional structure
of exoplanets' atmospheres. In this chapter we first review current exoplanets
phase curve observations and the particular challenges they face. We then
describe the different physical mechanisms shaping the atmospheric phase curves
of highly irradiated tidally locked exoplanets. Finally, we discuss the
potential for future missions to further advance our understanding of these new
worlds.Comment: Fig.5 has been updated. Table 1 and corresponding figures have been
updated with new values for WASP-103b and WASP-18b. Contains a table
sumarizing phase curve observation
The European Registered Toxicologist (ERT) : Current status and prospects for advancement
Acknowledgements We would like to thank the participants of the five workshops in which the issues presented in this paper were discussed and the revised guidelines prepared, as well as the EUROTOX Executive Committee and the societies of toxicology of Sweden, the Netherlands, Switzerland, Austria and France for their support which allowed the workshops to take place.Peer reviewedPostprin
A combined transmission spectrum of the Earth-sized exoplanets TRAPPIST-1 b and c
Three Earth-sized exoplanets were recently discovered close to the habitable
zone of the nearby ultracool dwarf star TRAPPIST-1. The nature of these planets
has yet to be determined, since their masses remain unmeasured and no
observational constraint is available for the planetary population surrounding
ultracool dwarfs, of which the TRAPPIST-1 planets are the first transiting
example. Theoretical predictions span the entire atmospheric range from
depleted to extended hydrogen-dominated atmospheres. Here, we report a
space-based measurement of the combined transmission spectrum of the two inner
planets made possible by a favorable alignment resulting in their simultaneous
transits on 04 May 2016. The lack of features in the combined spectrum rules
out cloud-free hydrogen-dominated atmospheres for each planet at 10-
levels; TRAPPIST-1 b and c are hence unlikely to harbor an extended gas
envelope as they lie in a region of parameter space where high-altitude
cloud/haze formation is not expected to be significant for hydrogen-dominated
atmospheres. Many denser atmospheres remain consistent with the featureless
transmission spectrum---from a cloud-free water vapour atmosphere to a
Venus-like atmosphere.Comment: Early release to inform further the upcoming review of HST's Cycle 24
proposal
SPECULOOS exoplanet search and its prototype on TRAPPIST
One of the most significant goals of modern science is establishing whether
life exists around other suns. The most direct path towards its achievement is
the detection and atmospheric characterization of terrestrial exoplanets with
potentially habitable surface conditions. The nearest ultracool dwarfs (UCDs),
i.e. very-low-mass stars and brown dwarfs with effective temperatures lower
than 2700 K, represent a unique opportunity to reach this goal within the next
decade. The potential of the transit method for detecting potentially habitable
Earth-sized planets around these objects is drastically increased compared to
Earth-Sun analogs. Furthermore, only a terrestrial planet transiting a nearby
UCD would be amenable for a thorough atmospheric characterization, including
the search for possible biosignatures, with near-future facilities such as the
James Webb Space Telescope. In this chapter, we first describe the physical
properties of UCDs as well as the unique potential they offer for the detection
of potentially habitable Earth-sized planets suitable for atmospheric
characterization. Then, we present the SPECULOOS ground-based transit survey,
that will search for Earth-sized planets transiting the nearest UCDs, as well
as its prototype survey on the TRAPPIST telescopes. We conclude by discussing
the prospects offered by the recent detection by this prototype survey of a
system of seven temperate Earth-sized planets transiting a nearby UCD,
TRAPPIST-1.Comment: Submitted as a chapter in the "Handbook of Exoplanets" (editors: H.
Deeg & J.A. Belmonte; Section Editor: N. Narita). 16 pages, 4 figure
Technical design and performance of the NEMO3 detector
The development of the NEMO3 detector, which is now running in the Frejus
Underground Laboratory (L.S.M. Laboratoire Souterrain de Modane), was begun
more than ten years ago. The NEMO3 detector uses a tracking-calorimeter
technique in order to investigate double beta decay processes for several
isotopes. The technical description of the detector is followed by the
presentation of its performance.Comment: Preprint submitted to Nucl. Instrum. Methods A Corresponding author:
Corinne Augier ([email protected]
WASP-31b: a low-density planet transiting a metal-poor, late-F-type dwarf star
We report the discovery of the low-density, transiting giant planet WASP-31b.
The planet is 0.48 Jupiter masses and 1.55 Jupiter radii. It is in a 3.4-day
orbit around a metal-poor, late-F-type, V = 11.7 dwarf star, which is a member
of a common proper motion pair. In terms of its low density, WASP-31b is second
only to WASP-17b, which is a more highly irradiated planet of similar mass.Comment: 6 pages, 5 figures, 4 tables. As accepted for publication in A&A;
bibcode = 2011A&A...531A..60
TRAPPIST-1: Global results of the Spitzer Exploration Science Program Red Worlds
With more than 1000 hours of observation from Feb 2016 to Oct 2019, the
Spitzer Exploration Program Red Worlds (ID: 13067, 13175 and 14223) exclusively
targeted TRAPPIST-1, a nearby (12pc) ultracool dwarf star orbited by seven
transiting Earth-sized planets, all well-suited for a detailed atmospheric
characterization with the upcoming JWST. In this paper, we present the global
results of the project. We analyzed 88 new transits and combined them with 100
previously analyzed transits, for a total of 188 transits observed at 3.6 or
4.5 m. We also analyzed 29 occultations (secondary eclipses) of planet b
and eight occultations of planet c observed at 4.5 m to constrain the
brightness temperatures of their daysides. We identify several orphan
transit-like structures in our Spitzer photometry, but all of them are of low
significance. We do not confirm any new transiting planets. We estimate for
TRAPPIST-1 transit depth measurements mean noise floors of 35 and 25 ppm
in channels 1 and 2 of Spitzer/IRAC, respectively. most of this noise floor is
of instrumental origins and due to the large inter-pixel inhomogeneity of IRAC
InSb arrays, and that the much better interpixel homogeneity of JWST
instruments should result in noise floors as low as 10ppm, which is low enough
to enable the atmospheric characterization of the planets by transit
transmission spectroscopy. We construct updated broadband transmission spectra
for all seven planets which show consistent transit depths between the two
Spitzer channels. We identify and model five distinct high energy flares in the
whole dataset, and discuss our results in the context of habitability. Finally,
we fail to detect occultation signals of planets b and c at 4.5 m, and can
only set 3 upper limits on their dayside brightness temperatures (611K
for b 586K for c)
Atmospheric Evolution
Earth's atmosphere has evolved as volatile species cycle between the
atmosphere, ocean, biomass and the solid Earth. The geochemical, biological and
astrophysical processes that control atmospheric evolution are reviewed from an
"Earth Systems" perspective, with a view not only to understanding the history
of Earth, but also to generalizing to other solar system planets and
exoplanets.Comment: 34 pages, 3 figures, 2 tables. Accepted as a chapter in
"Encyclopaedia of Geochemistry", Editor Bill White, Springer-Nature, 201
- …