21 research outputs found

    Transition from community dwelling to retirement village in older adults:cognitive functioning and psychological health outcomes

    Get PDF
    Supported living and retirement villages are becoming a significant option for older adults with impairments, with independence concerns or for forward planning in older age, but evidence as to psychological benefits for residents is sparse. This study examined the hypothesis that the multi-component advantages of moving into a supported and physically and socially accessible ‘extra-care’ independent living environment will impact on psychological and functioning measures. Using an observational longitudinal design, 161 new residents were assessed initially and three months later, in comparison to 33 older adults staying in their original homes. Initial group differences were apparent but some reduced after three months. Residents showed improvement in depression, perceived health, aspects of cognitive function and reduced functional limitations, while controls showed increased functional limitations (worsening). Ability to recall specific autobiographical memories, known to be related to social problem solving, depression and functioning in social relationships, predicted change in communication limitations, and cognitive change predicted changes in recreational limitations. Change in anxiety and memory predicted change in depression. Findings suggest that older adults with independent living concerns who move to an independent but supported environment can show significant benefits in psychological outcomes and reduction in perceived impact of health on functional limitations in a short period. Targets for focused rehabilitation are indicated, but findings also validate development of untargeted general supportive environments

    A Bayesian Belief Network to assess rate of changes in coral reef ecosystems

    Get PDF
    It is crucial to identify sources of impacts and degradation to maintain functions and services that the physical structure of coral reef provides. Here, a Bayesian Network approach is used to evaluate effects that anthropogenic and climate change disturbances have on coral reef structure. The network was constructed on knowledge derived from the literature and elicited from experts, and parameterised on independent data. Evaluation of the model was conducted through sensitivity analyses and data integration was fundamental to obtain a balanced dataset. Scenario analyses, conducted to assess the effects of stressors on the reef framework state, suggested that calcifying organisms and carbonate production, rather than bioerosion, had the largest influence on the reef carbonate budgetary state. Despite the overall budget remaining positive, anthropogenic pressures, particularly deterioration of water quality, affected reef carbonate production, representing a warning signal for potential changes in the reef state

    Genomic epidemiology of SARS-CoV-2 in a UK university identifies dynamics of transmission

    Get PDF
    AbstractUnderstanding SARS-CoV-2 transmission in higher education settings is important to limit spread between students, and into at-risk populations. In this study, we sequenced 482 SARS-CoV-2 isolates from the University of Cambridge from 5 October to 6 December 2020. We perform a detailed phylogenetic comparison with 972 isolates from the surrounding community, complemented with epidemiological and contact tracing data, to determine transmission dynamics. We observe limited viral introductions into the university; the majority of student cases were linked to a single genetic cluster, likely following social gatherings at a venue outside the university. We identify considerable onward transmission associated with student accommodation and courses; this was effectively contained using local infection control measures and following a national lockdown. Transmission clusters were largely segregated within the university or the community. Our study highlights key determinants of SARS-CoV-2 transmission and effective interventions in a higher education setting that will inform public health policy during pandemics.</jats:p

    A comparison of two novel alcohol dehydrogenase enzymes (ADH1 and ADH2) from the extreme halophile Haloferax volcanii

    No full text
    Haloarchaeal alcohol dehydrogenases are exciting biocatalysts with potential industrial applications. In this study, two alcohol dehydrogenase enzymes from the extremely halophilic archaeon Haloferax volcanii (HvADH1 and HvADH2) were homologously expressed and subsequently purified by immobilized metal-affinity chromatography. The proteins appeared to copurify with endogenous alcohol dehydrogenases, and a double Δadh2 Δadh1 gene deletion strain was constructed to prevent this occurrence. Purified HvADH1 and HvADH2 were compared in terms of stability and enzymatic activity over a range of pH values, salt concentrations, and temperatures. Both enzymes were haloalkaliphilic and thermoactive for the oxidative reaction and catalyzed the reductive reaction at a slightly acidic pH. While the NAD+-dependent HvADH1 showed a preference for short-chain alcohols and was inherently unstable, HvADH2 exhibited dual cofactor specificity, accepted a broad range of substrates, and, with respect to HvADH1, was remarkably stable. Furthermore, HvADH2 exhibited tolerance to organic solvents. HvADH2 therefore displays much greater potential as an industrially useful biocatalyst than HvADH1.Author has checked copyrightAM
    corecore