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a b s t r a c t

It is crucial to identify sources of impacts and degradation to maintain functions and services that the
physical structure of coral reef provides. Here, a Bayesian Network approach is used to evaluate effects
that anthropogenic and climate change disturbances have on coral reef structure. The network was
constructed on knowledge derived from the literature and elicited from experts, and parameterised on
independent data.

Evaluation of the model was conducted through sensitivity analyses and data integration was
fundamental to obtain a balanced dataset. Scenario analyses, conducted to assess the effects of stressors
on the reef framework state, suggested that calcifying organisms and carbonate production, rather than
bioerosion, had the largest influence on the reef carbonate budgetary state. Despite the overall budget
remaining positive, anthropogenic pressures, particularly deterioration of water quality, affected reef
carbonate production, representing a warning signal for potential changes in the reef state.
© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Coral reefs are important ecosystems that support biodiversity
and provide ecological, social and economic benefits for many
communities (Moberg and Folke, 1999; Cesar et al., 2003; Burke
et al., 2011).

The extent to which services (e.g. shore protection) and func-
tions (e.g. biodiversity) are maintained by coral reef ecosystems is
associated with the persistence of their three-dimensional struc-
ture (framework; Perry et al., 2008). Unfortunately, coral reefs have
suffered, and continue to suffer, significant framework degradation
and loss (Alvarez-Filip et al., 2009; Perry et al., 2013). Anthropo-
genic disturbances and pressures, such as urban and industrial
developments, destructive fishing activities, catchment misuse and
coastal and inland deforestation (Burke et al., 2002, 2011; Edinger
et al., 2000), have increased the vulnerability of these systems to
climate variability (Hoegh-Guldberg et al., 2007; Anthony et al.,
2008; Baker et al., 2008; Eakin et al., 2010), overall threatening
iversity, Uxbridge UB8 3PH,
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reefs' functionality (Kennedy et al., 2013).
Rate of changes of the reef framework have been largely

investigated through carbonate budget assessments that estimate
contribution from reef-building (e.g. hermatypic corals, crustose
coralline algae) and bioerosive (e.g. sea urchins, sponges, parrot-
fish) organisms (Eakin, 1996, 2001; Edinger et al., 2000; Hubbard
et al., 1990; Mallela and Perry, 2007; Perry et al., 2013; Stearn and
Scoffin, 1977). Coral reef structural integrity is associated with
positive budgets that occur when calcium carbonate production
exceeds the rate of erosion, whereas negative budgets occur
generally as a result of changes in the natural reef processes (Perry
et al., 2008; Kennedy et al., 2013).

Despite carbonate budgets being valuable in determining the
‘state’ of a reef system, they do not always provide a full picture of
disturbances and pressures responsible for changes in the frame-
work state, and are therefore limited in their application for long-
term management. In addition, varied and often incomplete data-
sets, as well as limited knowledge on the relationships between
coral reef abiotic and biotic factors, can result in considerable un-
certainty in the parameters of resulting models. In coral reef eco-
systems uncertainty may be associated with ecological and
biological processes (e.g. coral reef framework growth and erosion)
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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and with changes triggered by climatic and anthropogenic distur-
bances and pressures (e.g. changes in ecosystem state due to
extreme sea water temperatures, sedimentation, water pollution).
This has the potential to limit the identification of management
priorities and the definition of effective management actions
(Olsson et al., 2004; Smith et al., 2011).

A comprehensive approach that integrates uncertainty, can aid
sustainable coral reef management and prevent further decline.
Although, it is impossible to predict with certainty the result of
management decisions, it is important to provide decision-makers
with models that consider the impacts of implementing manage-
ment interventions or decision options in order to maximize their
benefit (Uusitalo et al., 2015). Therefore, to evaluate the effects of
anthropogenic and climatic disturbances on the reef framework,
we propose a Bayesian Belief Network (BBN) approach, which of-
fers a methodological framework to address uncertainty (Bennett
et al., 2013; Kelly et al., 2013).

BBNs associate variables via conditional probability distribu-
tions and use inference algorithms to calculate posterior proba-
bilities of the outcome states (Jensen and Nielsen, 2007). They
consist of two structural components: (1) a direct acyclic graph
(DAG), where each vertex represents one of the variables in the
model; (2) conditional probability tables (CPTs), indicating the
strengths of the links in the graph by denoting the likelihood of the
state of a ‘child’ node given the states of its ‘parent’ nodes (those
from which edges entering the node originated) (Renken and
Mumby, 2009; Landuyt et al., 2013). The DAG consists of a set of
variables or nodes that can take on a number of pre-defined
discrete “states”, which are mutually exclusive and exhaustive
(Borsuk et al., 2004). The presence of an edge linking two variables
indicates the existence of statistical dependence between them
(Aguilera et al., 2011). Inference can be used to propagate condi-
tional probabilities through the network (Aguilera et al., 2011),
whilst accounting for uncertainty.

BBNs enable the integration of empirical data and expert
knowledge (Uusitalo, 2007; Aguilera et al., 2011; Chen and Pollino,
2012), can operate in a data poor environment (Uusitalo, 2007), and
can be readily updated with newly available data, by combining the
new information with prior probabilities such that, the network
posterior probabilities are updated in response to additional
observational information (Marcot et al., 2001). Although BBNs are
efficient in integrating variables presented at different scales
(Wooldridge et al., 2005), they are constrained in describing
explicit spatial and temporal dynamics and interactions, requiring
the use of different nodes to represent and incorporate information
on different locations or times (Marcot et al., 2001; Kelly et al.,
2013). In addition, since they do not allow for feedback loops
among variables, time steps to describe such effects are needed
(Marcot et al., 2001; Kelly et al., 2013), adding complexity to the
model and limiting their application to systems or processes
described by feedback interactions (e.g. nutrient cycle; food webs).
Due to the explicit handling of uncertainty (as well as their ability to
integrate different type of data and knowledge) BBNs provide the
opportunity to identify key knowledge gaps in our scientific un-
derstanding of complex systems, and hence inform future research
priorities (Marcot et al., 2001; Uusitalo, 2007; Renken and Mumby,
2009).

The graphical structure of BBNs is particularly relevant in
ecosystemmanagement since it facilitates a participatory approach
during the development of the model and provides a user-friendly
framework to communicate the results (Marcot et al., 2001; Borsuk
et al., 2004; Jakeman et al., 2006; Aguilera et al., 2011; Chen and
Pollino, 2012; Vilizzi et al., 2013). Extensive reviews of the use of
BBN for environmental modelling can be found in Aguilera et al.
(2011) and Chen and Pollino (2012).
The Carbonate Budget BBN (CARBNET) was developed to eval-
uate coral reef carbonate balance under changing environmental
conditions and across reef bioregions. The aimwas to identify those
disturbances and pressures that exert the greatest influence in
modifying the reef framework CaCO3 (carbonate) budgetary state.
2. Methods

2.1. Network development process

CARBNET construction followed a well-defined procedure
through which i) variables affecting and describing the state of the
‘Calcium carbonate budget’ output node were identified, ii) the re-
lationships among these variables were identified, iii) the CPT ta-
bles were populated with data cases after discretisation of the data.
2.1.1. Identification of the variables composing CARBNET network
In CARBNET, variables contributing to coral reef framework

growth and destruction were identified through a literature search
with the key words ‘carbonate budget þ coral reef’, ‘CaCO3

budget þ coral reef’ and ‘calcium carbonate budget þ coral reef’
conducted in ISI Web of Science (Reuters) and Reefbase (http://www.
reefbase.org) between November 2010 and January 2011. The var-
iables composing the network were selected among those that
defined the quantitative contribution of the reef-building and
bioerosive taxa to the reef carbonate budget (see Appendix A). Reef-
building organisms were identified as calcifying organisms (i.e.
hard corals, crustose coralline algae and epibionts) that contribute
to biogenic carbonate production and deposition. Bioeroders were
identified as organisms contributing to chemical or mechanical
removal of carbonate from the reef frameworkwhile grazing on (i.e.
sea urchins and parrotfish) or boring into (i.e. sponges, bivalves,
sipunculans, polychaetes and euendoliths) the reef substrate.

Climatic and anthropogenic disturbances and pressures were
also included in the network to determine the extent to which
impacts affect reef preservation and carbonate balance. In this pa-
per we refer to disturbances as ‘actions’ (e.g. logging) that can
translate into increasing pressures (e.g. sedimentation and eutro-
phication) on the ecosystem, leading to likely changes in the state
of the reef communities (response), that as a consequence, may
impact reef framework functionality. Many of these disturbances
included those arising from climate change, such as sea surface
temperature rise, ocean acidification and increasing occurrence of
hurricane or cyclones, as well as disturbances from human activ-
ities including destructive fishing practices, inland deforestation,
coastal degradation and fish farming. In light of increasing regional
and global anthropogenic and climate change disturbances, fea-
tures giving information on the effects of disturbances on reef
ecosystem and communities, allowed for ‘what if’ analysis,
providing the basis to underpin changes in the framework CaCO3
budgetary state (Cooper et al., 2009; Burke et al., 2011), as well as
illustrating the effects that implemented management in-
terventions may have on preserving coral reef framework. Distur-
bance and pressure variables were identified among the carbonate
budget studies that assessed changes in the CaCO3 budgetary state,
relative to climatic and anthropogenic impacts (Table A.2, Appendix
A), as well as from the Reefs at Risk tool (Burke et al., 2002; Burke
and Maidens, 2004; Burke et al., 2011, 2012) where threats to the
world's coral reefs are described through map-based indicators
(Table A.3, Appendix A).

As part of this review, the information was conceptualised in a
diagram (not shown) in which dependencies were identified
among variables including the ‘Calcium carbonate budget’ response
node.

http://www.reefbase.org
http://www.reefbase.org
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2.1.2. CARBNET structure evaluation
The CARBNETconceptualisationwas proposed to twenty experts

in the field of coral reef management and ecology to identify flaws
in the network structure and address structural bias before model
parameterisation.

The number of experts formally consulted in environmental
modelling studies vary (Krueger et al., 2012). BBNs constructed for
water quality and watershed management have been con-
ceptualised with the inputs from three to six experts (Marcot et al.,
2001; Martìn de Santa Olalla et al., 2012; Lynam et al., 2010), whilst
expert numbers can increase for models constructed and devel-
oped during workshops (Vilizzi et al., 2013). Generally, a partici-
patory approach with workshops including experts, stakeholders
and final users has been used to construct and develop BBNmodels
(Ticehurst et al., 2007; Inman et al., 2011; Richards et al., 2013),
whilst other studies have validated the structure using question-
naires proposed to experts and stakeholders (Martín de Santa Olalla
et al., 2007). Here we used a mixed approach based on question-
naires with experts and interviews with the final users.

Experts were consulted through an online questionnaire
comprising of 29 questions, of which 73% were closed questions
(see supplemental material, Appendix C). Open ended questions
were used to provide the experts with an opportunity to detail their
opinions. Feedback to the questionnaires was provided by twelve
experts located in the United Kingdom, Caribbean, Philippines,
Thailand, Western Indian Ocean and USA. As a result, nodes
considered redundant and edges indicated as incorrect or missed,
were re-investigated and evaluated through a tailored literature
search. The majority of the experts (84%) agreed with most of the
literature-based edges in the network, whilst 13% partially agreed
and 3% disagreed. All edges that experts queried as incorrect were
re-investigated in the literature and in the case of conflicting in-
formation on dependency between variables, the edgewas omitted
to avoid introducing bias in the network structure. Similarly, the 15
edges indicated by experts as missed dependencies among vari-
ables were investigated in the literature before updating the
network. For instance, the impact exerted by sediments on mac-
roalgae cover was included in the network following feedback from
the experts that indicated the importance of this dependency.
Indeed, previous studies confirmed that direct deposition of sedi-
ments on frondose elongate algae can affect their physiological
processes (e.g. photosynthesis or gas and nutrient exchange)
reducing growth and biomass with direct effects on their cover
(Schaffelke, 1999; Fabricius, 2005; Airoldi and Cinelli, 1997; Umar
et al., 1998; Kawamata et al., 2012). Based on feedback from the
experts, the network was updated and presented to the final users
emanagers and wardens of the GrenadaMolini�ere-Beaus�ejour and
Carriacou Marine Protected Areas (MPAs). Interviews with the final
users were conducted, between January and February 2013, to
assess how the model conceptualisation would be interpreted and
if any final changes needed to bemade. Cosmetic changes (i.e. name
changes) were suggested from both experts and final users, and
incorporated into the final model. For instance, managers sug-
gested that the use of common names instead of taxa specific
names (e.g. sea urchin instead of echinoids) can improve model
interpretation, overall improving accessibility to the graphical
representation of the model.

This participatory approach was used to refine the conceptual
diagram to its final version (Fig. 1). The final CARBNET diagram
(Fig. 1) is comprised of anthropogenic and climatic disturbances,
the pressures they exert on the ecosystem, through variables rep-
resenting reef-building and bioeroder communities and the CaCO3
budgetary state.

Nodes representing different levels of spatial resolution were
used to capture changes that may occur at different spatial scales.
Presence/absence of reef-building and erosive organisms or reef
growth and erosion processes are captured at the smallest scale of
reef depth, but also for an entire reef (‘Site’), sub-region (‘Reef type’,
‘Reef topography’) or region (‘Coral reef region’). For instance, the
node ‘depth’ (states: shallow, mid and deep), relates depth-specific
reef responses to reef growth and erosion, whilst the node ‘Reef
topography’ relates the same processes to whole reef systems. The
final model is composed of 58 nodes and 94 cause-effects links.

2.2. Data and discretisation

In CARBNET, variables representing anthropogenic and climatic
disturbances were described through categorical states, while
ranges were used to represent the states of most of the environ-
mental and taxa nodes (Appendix B).

Quantitative data used to inform the biological components of
the network, were collected in the Wakatobi Marine National Park
(southeast Sulawesi, Indonesia; Fig. 2) and in the Molini�ere-Beau-
s�ejour MPA (Grenada, Caribbean; Fig. 2). Data on benthic percent-
age cover, sea urchin dimensions (test size) and relative density,
parrotfish dimensions, parrotfish life phase and relative density,
macroborers density and water quality were collected for each re-
gion from four sites at three depths (shallow: 2e4 m depth; mid:
6e8 m depth; deep: 12e16 m depth). Estimates of benthic per-
centage cover and sea urchin density were conducted along 10 m
belt transects (n ¼ 6) in Grenada and 30 m belt transects (n ¼ 2) in
Indonesia. Parrotfish density, dimensions and life phase were
visually assessed along 30 m belt transect (Grenada n ¼ 6;
Indonesia n ¼ 3) deployed parallel to the shore and following reef
contours. Before the node states were defined, CaCO3 production
and erosion rates (kg CaCO3 m�2 y�1) were calculated using the
ReefBudget tool (Perry et al., 2012). Carbonate budgets were
determined for each site as the difference between mean gross
carbonate production and erosion. ReefBudget is a reproducible
methodology that provides a quantitative estimation of the car-
bonate deposited and accumulated on the reef framework by
determining net reef production. Integrating ReefBudget compo-
nents and results in CARBNET allowed standardised data collection
and analysis.

The effects of anthropogenic pressures on the sites were
determined for sedimentation, turbidity and nutrient concentra-
tions. Sediment rates and turbidity data were collected at all sites,
whilst nutrients concentration data was collected for Grenada only
due to logistical challenges. This resulted in nutrients nodes for the
Wakatobi sites having uninformative uniform distributions due to
missing data.

Sea surface temperature (SST) variations for Wakatobi and
Grenada for the years 2011 and 2012 were obtained from satellite
bi-weekly data from NOAA Coral Reef Watch virtual stations (CRW,
coralreefwatch.noaa.gov/satellite/vs/docs/list_vs_group_latlon_
201103.php). Wakatobi virtual station was located approximately
25 km north from the sites (5.0� S, 124� E) while Buccoo Reef
(Tobago,11.5� N, 61� W), the virtual station used for Grenada's data
was located approximately 65 km south of Grenada east coast.

During the surveys bleached coral colonies were not observed at
any site. Field observations were corroborated using NOAA CRW
records for 2011 and 2012 on SST anomalies (defined as the dif-
ference between SSTand the daily climatological SST) and degree of
heating weeks (a measure of thermal stress accumulated over a 12-
weeks period used to define the likelihood of bleaching). Atmo-
spheric carbon dioxide was assumed to be equal to 380 ppm (equal
to aragonite saturation above 3.3) at all sites and depths, as for coral
reef scenario A (CRS-A) from Hoegh-Guldberg et al. (2007), corre-
sponding to reefs that can sustain net carbonate accretion. The
dataset comprised 192 records for each of the 58 variables, with

http://coralreefwatch.noaa.gov/satellite/vs/docs/list_vs_group_latlon_201103.php
http://coralreefwatch.noaa.gov/satellite/vs/docs/list_vs_group_latlon_201103.php


Fig. 1. Carbonate budget BBN structure. CARBNET was created following consultation with experts and final users. From top to bottom (a) disturbances from direct human activities
and climate change, (b) the pressure they exert on the ecosystem, (c) the direct effects and changes in the environment resulting from a combination of human activities and climate
change and taxa directly affected by these pressures (d1, d2). Outgoing arrows define parent nodes, whilst incoming arrows define child nodes.
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missing data for nutrient concentrations for the Indonesian sites
and for the erosive sponges, worms and bivalve variables for one
site in Indonesia. In the case of the nodes ‘Sediment infilling’,
‘Phytoplankton bloom’ and ‘Sub-lethal bleaching’ for which infor-
mation were not available, CPTs were defined using uninformative
uniform distributions (see Table B.1, Appendix B for details on the
variables and units).

Data cases derived from the literature (LIT) on studies conducted
on the state of Discovery Bay reefs (Jamaica, Caribbean) were used
as independent dataset for model validation. This literature-based
dataset (LIT) included data from 1980 to 2003 on hard coral and
crustose coralline algae percentage covers, sea urchin density and
dimension, and parrotfish density and biomass (Liddel and
Ohlhorst, 1987; Morrison, 1988; Picou-Gill et al., 1991; Liddel and
Ohlhorst, 1992; Steneck, 1993; Andres and Witman, 1995; Craw-
ford, 1995; Miller et al., 1996; Sary et al., 1999; Aronson and Precht,
2000; Cho and Woodley, 2000; Munro, 2000; Grant et al., 2001;
Edmunds and Carpenter, 2001; Haley and Solandt, 2001; Hawkins
and Roberts, 2003; Quinn and Kojis, 2005; Bechtel et al., 2006;
Crabbe, 2008, 2010; Gayle et al., 2010). Carbonate production,
erosion and budget were calculated from 2000 to 2003 using mean
benthic percentage covers data, following Perry et al. (2012) and
Mallela and Perry (2007). Reef topographic complexity (i.e.
rugosity) was estimated using Alvarez-Filip et al. (2009) for the
same years. Rates of carbonate erosion were estimated following
Perry et al. (2012) for Diadema antillarum urchins, from individuals’
size class measurements and density data, and for parrotfish from
density and size class ranges, assuming that all parrotfish
individuals below 45 cm (total length) were in their initial life
phase for the years between 2000 and 2003. In the LIT dataset
variables were defined by 24 records, with missing data relative to
the macro-invertebrate variables.

Continuous variables were discretised based on bins derived
from the literature and used to define the states of the network
nodes (Appendix B). The literature-based discretisation process
provided a transparentmethod to update the nodes states based on
the state of the knowledge. Node states were assigned based on the
ecological and functional thresholds of the biological and envi-
ronmental variables.

For instance, a sedimentation rate threshold of 10 mg cm�2 d�1

has been suggested as a tipping point for hermatypic coral survival
(Rogers, 1990; Fabricius, 2005). However, below this threshold,
chronic sedimentation can affect coral growth and fitness by
increasing coral metabolic costs through the removal of settled
particles or reduction of photosynthetic yield (Fabricius, 2005).
Furthermore, the sedimentation threshold is lowered for coral re-
cruits that are more sensitive to changes in sedimentation than
adult colonies, with negative consequences for the reseeding of
coral communities (Fabricius, 2005). The stress exerted on corals by
a quantity of sediment below the coral survival threshold, is line-
arly related to the duration of sedimentation, so that long periods of
sediment deposition exerts a similar effect to that produced by a
large amount of sediment deposited in a shorter time (Rogers,
1990; Fabricius, 2005). From a management perspective, sedi-
mentation stress to coral reefs is due to changes in sedimentation
rates and consequently water quality, rather than high-ambient



Fig. 2. Location of the Grenada and Wakatobi sites (C). Data collected in these two coral reef bioregions were used to parameterise CARBNET.
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sediment levels (Risk and Edinger, 2011). Therefore, rather than
define the states of the ‘Sediment rates’ node (Fig. 1) on the
10 mg cm�2 d�1 coral survival threshold, bins were selected to
account for the amount of sediment deposited and time of depo-
sition (Appendix B; Table B.1). Although the boundary selected for
the intermediate node state (3e10 mg cm�2 d�1) accounted for
estimates that should be regarded as a warning for a clear-water
reef, it should be noted that too large boundaries may not be able
to capture subtle dynamics within a system (Renken and Mumby,
2009; Chen and Pollino, 2012). Importantly, the model does not
apply for coral reefs growing in turbid and sedimentary environ-
ments, where corals grow and survive under high ambient sedi-
mentation (Roy and Smith, 1971; Perry and Larcombe, 2003), since
bins were selected based on literature that evaluated the effect of
sedimentation on clear-water reef settings.

Node size was maintained from a minimum of two to a
maximum of four states to reduce CPT size and therefore decrease
computational costs.
2.3. Parameter estimation process

The relationships between the states of parent (independent)
and child (dependent) nodes were quantified within CPTs that
presented the probability of a node to take on each discrete state,
given the states of its parent nodes (Marcot et al., 2001; Pollino
et al., 2007; Chen and Pollino, 2012). Parameter estimation was
conducted using the Bayes Net Toolbox in MATLAB (Murphy, 2001).
CPTs were initially compiled with dirichlet priors (Heckerman et al.,
1995). These prior CPTs were updated using data from the field.
Field data were combined and bootstrapped (Bennett et al., 2013).
This involved re-sampling with replacement (n ¼ 250) and the
cases excluded from the bootstrapped sets during the boot-
strapping process (BLO), were used together with the LIT dataset as
independent data (testing set) for model validation. Due to the
presence of missing values, the training set was created by allowing
the model to learn the conditional probabilities from bootstrapped
partially observed data using the expectation maximization (EM)
algorithm (Lauritzen, 1995). EM estimates the CPTs based on the
structure of the network and the dataset by finding the marginal
posterior probability for each node that yields the greatest likeli-
hood given the available data (Lauritzen, 1995; Chen and Pollino,
2012). The model was then tested using i) LIT and ii) LIT com-
bined with BLO, as independent datasets (testing set). In this way
none of the data used to train the model were used for testing it,
hence validation was conducted using a testing set of data that
resulted as ‘new’ or ‘unknown’ to the model.
2.4. Evaluation of the CARBNET

2.4.1. Accuracy
The ability of the model to correctly predict instances on inde-

pendent/unseen data was investigated by using resampling/
holdout analysis and inspecting the resultant confusion matrices
(Bennett et al., 2013). For example, for the node ‘Calcium carbonate
budget’, the predicted and actual instances were cross-tabulated for
each of the four states resulting in a 4 � 4 matrix (positive high,
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positive low, negative low, negative high; Pollino et al., 2007).
Correctly classified instances (CCI) were assessed as the percentage
of cases correctly predicted by the model divided by the total
number of cases, providing a measure of how many instances the
model predicts correctly when tested against an independent
dataset. Model accuracy (Bennett et al., 2013) was estimated by
averaging the CCI of all nodes obtained by testing themodel against
the independent sets i) LIT and ii) the LIT combined with BLO. In
addition, weighted Kappa and the correctly classified instances are
presented for the output node ‘Calcium carbonate budget’. Weighted
Kappa measures the degree of agreement between the observed
and predicted cases, and accounts for the proportion of disagree-
ment between the actual categories, assigning less weight to the
agreement as categories are further apart (Fleiss and Cohen, 1973;
Viera and Garrett, 2005).

2.4.2. Sensitivity analysis
Sensitivity analyses (Norton, 2015) were conducted using the

LinkStrength package (Ebert-Uphoff, 2007) implemented for
MATLAB's Bayes Net Toolbox to identify the relative influence of the
variables in the network.

Since “the probability distribution (CPT) of each node is a
depiction of uncertainty” (Marcot et al., 2001), the uncertainty
associated with each node was measured using entropy which is a
score of a variable's “richness” (i.e. howmuch information is within
the data for that particular variable; Pollino et al., 2007; Pearl,
1988). Therefore, as suggested by Marcot et al. (2001), the uncer-
tainty associated with a particular node is propagated to the
probability distribution of the output node when solving the
network. Nodes were then ranked accordingly from the most un-
certain to the least uncertain, with the most uncertain variables
being less informative within the network.

The sensitivity of one node to multiple other nodes, was eval-
uated through the mutual information (MI) that determines if the
state of a particular node is sensitive to the state of others by
measuring the connection strength for any pair of nodes (adjacent
or not), taking any possible path between them into account (Ebert-
Uphoff, 2007). When MI is equal to zero, nodes are known to be
mutually independent and therefore the condition of one node
does not affect the state of another (Pearl, 1988).

One limitation of entropy-related measures is based on the
uncertainty being affected by imbalanced data as uniform distri-
butions are typically treated as the most uncertain. However, if
discretisation is poorly chosen and there are not many cases of
some states then a highly non-uniform distribution (with appar-
ently low uncertainty) is generated. What is more, the scale and
ordering of the intervals are not taken into account. Care must
therefore be taken when interpreting these results but it should be
noted that these limitations are shared by any other measure that is
a function of only the probabilities of a random variable's states to
measure uncertainty. Entropy nevertheless remains by far the most
popular measure for uncertainty (Pearl, 1988).

Results of these two measures are generally used to identify the
most relevant variables for predicting the output node as well as in
particular cases identifying gaps associated with specific nodes-
and therefore the need for more data collection.

2.5. Model predictions

CARBNET was applied to scenario-based analysis to determine
the alternative conditions in the state of the reefs relative to the
effects of anthropogenic and climatic disturbances and pressures
on the coral reef framework. Predictions are aimed at demon-
strating the utility of CARBNET to quantify alternative states of the
‘Calcium carbonate budget’ node, determined by changes in the
carbonate producer and bioeroder communities driven by modifi-
cations in the state of the disturbances and pressures variables.
Disturbances and pressures can affect reef-building organisms and
bioeroder communities, reducing carbonate production and/or
increasing framework erosion with consequences to the CaCO3
budgetary state (Kennedy et al., 2013). Here we present three ex-
amples of the scenarios modelled. Scenario 1 presents the current
budgetary condition and was defined by leaving the node states
unaltered, i.e. the distribution with no evidence introduced. Sce-
nario 2 assumes that changes in the budgetary state are due to
changes in the environmental conditions as a consequence of the
effect that disturbances have on the natural reef processes. The
scenario was defined by setting the disturbance nodes (Fig. 1) to
their highest state (e.g. probability of severe coastal degradation
equal to 1, meaning that severe degradationwas certain). Scenario 3
considers changes in the budgetary state for a system in which
overexploitation of herbivore fish, defined by the certainty of low
parrotfish density, and coastal waters deterioration due to eutro-
phication (Ammonia >1.0 mM, Phosphate >0.1 mM) and severe
sedimentation (>10 mg cm�2 d�1) act together to increase mac-
roalgae cover (state ‘>75%’ equal to 1) and decrease calcifying or-
ganisms' abundances (dominant state for ‘Hard coral cover’ and ‘CCA
cover’ was ‘<10%’). The scenario outcomes, relative to the output
node ‘Calcium Carbonate Budget’, were then evaluated by running
the model in ‘most probable explanation’ (mpe) mode, which
shows the most likely state of the network nodes given the
evidence.

3. Results

3.1. Accuracy

The model showed a great disparity in the mean CCI values
obtained during validation against the two independent datasets.
Indeed, the model was able to classify correctly less than 50% of the
instances (42%) when tested against LIT, whilst it performed better
when tested against the combined LIT and BLO dataset (77%).
However, CCI values were close when model was tested against LIT
(62%) and against the combined LIT and BLO dataset (65%) in
relation to the output node ‘Calcium carbonate budget’. In addition,
a substantial agreement was found between the observed and the
predicted cases with regard to the four states associated with the
output node ‘Calcium carbonate budget’ when the model perfor-
mance was investigated using weighted Cohen's kappa. Also in this
case agreement increased from 0.61 for the LIT to 0.64 for the
combined testing set, corresponding to a greater number of
‘negative’ carbonate budget (‘low’ and ‘high’ negative) instances
correctly classified when BLO was included in the independent set
(Fig. 3B).

3.2. Sensitivity analysis

3.2.1. Entropy
Entropy results showed that variables for which the CPT was

described by less informative probability distributions, such as,
some of the biological and environmental variables were the most
uncertain, whilst less uncertain variables were either those defined
regionally, such as SSTor ocean acidification, or those inwhich CPTs
were defined by uninformative equal priors, such as ‘Sediment
infilling’ (Table 1). Among the most uncertain nodes were inter-
mediate nodes influencing the state of the carbonate budget by
influencing calcium carbonate production (e.g. ‘Light availability’) or
degradation (e.g. ‘Sea urchin size’). In particular, sea urchin erosion
rates are size and species-specific, with larger urchins removing a
greater quantity of carbonate substrate (Bak, 1990). Similarly,



Fig. 3. Confusion matrices for model parameterised on empirical data tested against
data derived from the literature (A) and combined data from the literature and field
cases not sampled during bootstrapping (B). The leading diagonal of the matrices
represents correctly predicted instances. Node states represent the class categories of
the confusion matrices for the actual and predicted values. The ‘Calcium carbonate
budget’ node is characterised by four states, positive high budget (PH) corresponding
to high carbonate production, positive low budget (PL) corresponding to a reduced
carbonate production, negative low budget (NL) corresponding to low erosion and
negative high budget (NH) corresponding to high erosion of the reef framework.
Colour bar represents classification rates in percentages. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)

Table 1
Sensitivity analysis showing uncertainty calculated using the entropy function. The
nodes states are presented in the second column; Wakatobi and Grenada datasets
were combined.

Variables States Entropy

Site 8 2.33
Calcium carbonate budget 4 1.73
Light availability 4 1.96
Sea urchin species 4 1.93
Reef depth 3 1.58
Fishing quota/vessels 3 1.58
Coastal population growth 3 1.58
Extreme weather events intensity 3 1.58
Rugosity 3 1.58
Sea urchin size 4 1.58
Destructive fishing practices 3 1.57
Fish farming 3 1.54
Fish nursery state 3 1.57
Reef topography 3 1.57
Recently killed corals 3 1.57
Macroalgae cover 4 1.52
Fishing pressure 3 1.47
Turbidity 3 1.42
Sea urchin erosion 3 1.35
Water entering coastal areas 3 1.32
Calcium carbonate removal 3 1.30
Ammonia concentration in waterways 3 1.26
Phosphate concentration in waterways 3 1.26
Sediment load in waterways 3 1.26
Parrotfish erosion 3 1.24
Calcium carbonate production 3 1.24
Nutrient load 3 1.12
Macro-invertebrate bioerosion 3 1.07
Erosive worms density 3 1.06
Mean seasonal rainfall 3 1.03
Hard coral production 3 1.02
Catchment degradation 4 1.01
Inland deforestation rates 3 1.00
Coastal development 3 1.00
Farming and agriculture 4 1.00
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hermatypic corals mean calcification rates (kgCaCO3 m�2 y�1),
relevant for the production of calcium carbonate from this group,
are dependent on the light available for photosynthesis (Table 1).
Parrotfish groups 2 1.00
Parrotfish density 3 0.99
Sediment load 3 0.97
Sea urchin density 3 0.95
Hard coral mean calcification 2 0.93
CCA mean calcification 2 0.92
Sediment rates 3 0.88
Reef type 4 0.87
Bivalves density 3 0.82
Hard coral cover 4 0.81
Erosive sponges density 3 0.53
Extreme weather events frequency 3 0.09
Sediment infilling 3 0.08
Lethal bleaching 3 0.06
Sub-lethal bleaching 3 0.06
Crustose coralline algae cover 4 0.05
Ocean acidification 3 0.04
CCA production 3 0.04
Atmospheric carbon dioxide 3 0.03
Freshwater discharge 2 0.02
Sea Surface Temperature 3 0.03
Phytoplankton bloom 2 0.02
Region 4 0.00
3.2.2. Mutual information
Overall the model showed 13 out of 58 nodes being highly

sensitive (MI > 0.3) to others. However, some of the relationships
described through MI were inaccurate (e.g. ‘Ammonia concentration
in waterways’ influencing ‘Phosphate concentration in waterways’),
reducing the number of sensitive interactions occurring in the
network.

The response node, ‘Calcium carbonate budget’, was highly sen-
sitive to the ‘Calcium carbonate production’ and ‘Hard coral car-
bonate production’, whilst some sensitivity was observed in relation
to ‘Calcium carbonate removal’ (Table 2), suggesting that reef
budgetary conditions are influenced by carbonate production
rather than degradation through erosion. Other variables influ-
encing the output node were ‘Reef rugosity’, ‘Reef depth’ and ‘Light
availability’, which either contributes to the budgetary state, as a
consequence of biologically-driven carbonate deposition (i.e. reef
rugosity) or influencing calcification rates. The quantity of car-
bonate removed through erosion from the reef framework was
moderately sensitive to the bioerosion activity macro-invertebrates
(Table 2).

Climate change variables had a negligible effect on the other
network variables with the exception of ‘Sea Surface Temperature
rise’, which mildly affected hard coral cover (MI ¼ 0.02) and crus-
tose coralline algae carbonate production (MI ¼ 0.02). Conversely,
anthropogenic disturbances (see Fig. 1a), had no effects on the
network nodes (MI ¼ 0). Catchment degradation had a mild effect
on water quality variables (MI < 0.1) such as sedimentation and
nutrient concentrations (‘Sediment load in waterways’, ‘Phosphate in
waterways’, ‘Sediment rate’). However, ‘Sediment rates’was sensitive
to ‘Water entering coastal water’, suggesting that catchment
management may be critical to reduce sediment pressures and
sustain reef framework growth (Table 2). Similarly, ‘Lethal’ and ‘Sub-
lethal bleaching’ nodes were sensitive to changes in water quality
due to the nodes ‘Freshwater discharge’ and ‘Sediment rate’ affecting
indirectly reef-building organisms(Table 2). The node ‘Turbidity’
(suspended particle in the water column) was sensitive to the load
of sediment reaching the coastal area, and its child node ‘Light
availability’ was also sensitive.



Table 2
Summary of mutual information analysis results presenting values above or equal to
0.1. Mutually dependent nodes (x) are more sensitive to uncertainty and to the state
of another nodes (y), taking any possible path between them into account.

Node affecting sensitivity Sensitive node MI

Reef depth Light availability 0.49
Rugosity 0.28
Hard coral carbonate production 0.22
Hard coral cover 0.14
Calcium carbonate production 0.14
Calcium carbonate budget 0.10

Fishing pressure Parrotfish density 0.15
Water entering coastal areas Sediment load 1.33

Sediment rate 0.45
Sub-lethal bleaching 0.15
Turbidity 0.33

Sediment load Sediment rate 0.44
Turbidity 0.39
Sub-lethal bleaching 0.14

Freshwater discharge Lethal bleaching 0.50
Sediment rate Sub-lethal bleaching 0.29
Lethal bleaching Hard coral cover 0.20
Turbidity Light availability 0.33
Light availability CCA mean calcification 0.32

Hard coral mean calcification 0.31
Rugosity 0.14

Macroalgae Sea urchin density 0.15
Parrotfish density 0.11

Recently killed corals Macro-invertebrate bioerosion 0.22
Hard coral cover Hard coral carbonate production 0.15
Rugosity Hard coral carbonate production 0.32

Calcium carbonate production 0.23
Calcium carbonate budget 0.15

Sea urchin density Sea urchin erosion 0.19
Parrotfish species Parrotfish erosion 0.14
Parrotfish density Parrotfish erosion 0.15
Hard coral carbonate production Calcium carbonate budget 0.63
Macro-invertebrate bioerosion Calcium carbonate removal 0.13
Calcium carbonate production Calcium carbonate budget 0.77

Fig. 4. Model probability distributions of the ‘Calcium carbonate budget’ node states
for the three proposed scenarios.
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3.3. Model predictions

For the scenarios proposed, the model showed a mild response
to the effects of anthropogenic and climatic disturbances on the
CaCO3 budgetary state, whilst a distinctive response was observed
in relation to the anthropogenic pressures, with conditions also
influenced by the level of grazing occurring on the reef.

Scenario 1. Predictions on the actual state of the reef based on
the output node ‘Calcium carbonate budget’ showed a high
probability of finding the carbonate budget in a positive state
(Fig. 4). In this case mpe for this budgetary state was relative to
the ‘positive high’ calcium carbonate production.
Scenario 2. Impacts from disturbances (Fig. 1a) were associated
with a substantial increase in erosionwith 12% of variation with
respect to the previous scenario. When anthropogenic and cli-
matic disturbances were defined to have highest impact on the
system, negative budget states increased substantially, whilst
between the positive states, only the ‘positive high’ state
decreased drastically (Fig. 4). However, this variation in the
posterior probability did not produce a substantial shift in the
budgetary condition and thempe for the output node under this
scenario remained a ‘positive high’ carbonate production state.
Scenario 3. Under the conditions of elevated sedimentation,
eutrophication and overexploitation of herbivore fish, the pos-
terior probability varied by 13%, resulting in substantial changes
in the likelihood for the states of the output node (Fig. 4). This
condition was associated with a shift to a relative lower
budgetary state (mpe ¼ ‘positive low’). It appeared that
intermediate nodes can substantially affect the CaCO3 budgetary
state, by reducing the probability of the positive states whilst
increasing the likelihood of both negative budget states (Fig. 4).

4. Discussion and conclusions

CARBNET provides a means for capturing the dependencies
between climate change and human disturbances and pressures,
and their influence on the reef framework state. The benefit of
using Bayesian Belief Networks is that they explicitly model
ecological causal influences and uncertainty, providing a better
level of information that decision makers can use to interpret the
ecological and biological changes occurring in a system (Marcot
et al., 2001; Bennett et al., 2013).

During model construction, literature-based discretisation had
the advantage of including information derived from studies con-
ducted under different environmental conditions and in different
coral reef bioregions, introducing a large range of possible condi-
tions and reducing the bias that can occur when automatic dis-
cretisation is applied to variables with unbalanced data cases
(Uusitalo, 2007; Chen and Pollino, 2012). These multiple sources of
knowledge aided capturing a richer set of variable states, in order to
improve the ability of the model to generalise across coral reef
systems. However, the discretisation process is generally regarded
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as a potential source of bias since “too large categories may not be
able to capture subtle dynamics occurring in a system, whilst nar-
rower categories may not be feasible due to the uncertainty and
lack of data to define accurately the conditional probabilities for
each possible combination of levels” (Renken and Mumby, 2009).
For some of the CARBNET variables, a trade-off between uncer-
tainty and accuracy may have been exacerbated by too large cate-
gories, whichmay have overlooked understudied or rare conditions
that occur in coral reef systems. In this case, experts can be con-
sulted to elicit rare or less studied conditions in order to improve
model applicability. In general, we recognise that further involve-
ment of experts is needed to assess flaws in discretisation and that
this participatory process can be further applied to corroborate
model outputs.

The use of standardised methodology for data collection and
analysis (ReefBudget) was a practical approach to reduce the bias
that can occur during the standardisation of data collected and
analysed with different methodologies. ReefBudget is set up as an
excel document, where estimates of carbonate production and
erosion are automatically calculated based on benthic cover and
density data collected using a consistent field methodology (Perry
et al., 2012). This methodology provides information that is
beyond the hard coral-macroalgae relationship, hence adding to
the knowledge relative to some of the complex relationships
occurring on the reef.

Overall, sensitivity analyses showed the need to inform the
knowledge gaps, which reside in data characterised by little vari-
ation and therefore high uncertainty. The biological and environ-
mental components of the network resulted in high entropy values
potentially due to a lack of data to encode the CPTs. Integrating the
non-informative nodes with more varied data (data with a high
mixture of combinations of variable states) can help to determine
whether the variation observed is noise or based on some rela-
tionship with other variables. However, measures of uncertainty
should be treated carfully since sometimes a uniformly distributed
variable may be the result of intrinsic qualities of the variables
(noise/external factors) or how the data has been discretised.
Conversely, data that has non-uniform distributions may not
necessarily be certain e for example due to lack of data for some
states. Careful use of intervals suring discretisation helps to over-
come this to some degree. The sensitivity of the node ‘Calcium
carbonate budget’ to the quantity of calcium carbonate deposited by
reef-building organisms (e.g. hermatypic corals), rather than from
carbonate degradation through bioerosion, may be due to the
reduced number of data cases for some of the bioeroder taxon
variables (e.g. macroborers density). Therefore, it is likely that
knowledge gaps in the bioerosive taxa components (Fig. 1, d1) of
the model have caused misclassification of the negative budgets.

Despite the overall budget remaining positive, the model pre-
dicted a likelihood increase in bioerosion when the system is sub-
jected to extreme climatic and anthropogenic disturbances,
indicating that disturbances have the potential for changes in the
CaCO3 budgetary state. However, climatic and anthropogenic input
nodes were less important in influencing the output node state,
being unable to produce a consistent shift to any of the other node
states (mpe ¼ ‘positive high’ calcium carbonate production).
Declining carbonate production was observed also in relation to
poor water quality, supporting the general view that high sedi-
mentation and nutrients levels are important drivers of change in
coral reef framework (Hallock and Schlager, 1986; Hallock, 1988; Le
Campion-Alsumard et al., 1993; Kennedy et al., 2013). Direct effects
of sedimentation are well documented (see Fabricius, 2005);
however, its effect on erosion is still poorly understood (Perry and
Larcombe, 2003). In this context, depletion of herbivore fish
appeared to magnify the response of the system to water quality
degradation, suggesting that the effect of overfishing is additive to
poor water quality in determining changes in the CaCO3 budgetary
state. There have been examples on how exploitation of herbivore
fish may reduce the erosive pressure on the reef, overall main-
taining a positive budget (Mallela and Perry, 2007; Perry et al.,
2014). However, negative budgets may offset positive net produc-
tion in the case of extensive loss in coral cover and low recruitment
of juvenile corals also as a consequence of algal blooms (Perry et al.,
2013). This complex interaction seems to not be accounted for,
despite dependencies presented in the model. The consequence is
that the model is perhaps limited in detecting hidden conditions
although additional sources of data cases may improve this draw-
back. In a management context scenario 3 indicates that managing
sources (e.g. catchment degradation) of pressures (e.g. sedimen-
tation) may aid positive balance and reef framework growth (Perry
et al., 2008; Kennedy et al., 2013).

In this paper we have demonstrated the potential of a BBN
approach to model coral reef state, improving our knowledge into
the complex interactions occurring between disturbances and reef
framework dynamics. In addition, we have shown how such a
model can be used to identify knowledge gaps that need to be
informed to prompt comprehensivemanagement strategies. Future
work will involve the inclusion of information on marginal systems
(e.g. reefs flourishing in turbid and sedimentary settings), espe-
cially in relation to the interaction between bioerosion and sedi-
mentation, and integration of the model with more varied data to
add knowledge.
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