145 research outputs found

    Galaxy-Wide Shocks in Late-Merger Stage Luminous Infrared Galaxies

    Get PDF
    We present an integral field spectroscopic study of two nearby Luminous Infrared Galaxies (LIRGs) that exhibit evidence of widespread shock excitation induced by ongoing merger activity, IC 1623 and NGC 3256. We show the importance of carefully separating excitation due to shocks vs. excitation by HII regions and the usefulness of IFU data in interpreting the complex processes in LIRGs. Our analysis focuses primarily on the emission line gas which is extensive in both systems and is a result of the abundant ongoing star formation as well as widespread LINER-like excitation from shocks. We use emission-line ratio maps, line kinematics, line-ratio diagnostics and new models as methods for distinguishing and analyzing shocked gas in these systems. We discuss how our results inform the merger sequence associated with local U/LIRGs and the impact that widespread shock excitation has on the interpretation of emission-line spectra and derived quantities of both local and high-redshift galaxies.Comment: 14 pages, 11 figures, Accepted to Ap

    Survival of patients with metastatic breast cancer: twenty-year data from two SEER registries

    Get PDF
    BACKGROUND: Many researchers are interested to know if there are any improvements in recent treatment results for metastatic breast cancer in the community, especially for 10- or 15-year survival. METHODS: Between 1981 and 1985, 782 and 580 female patients with metastatic breast cancer were extracted respectively from the Connecticut and San Francisco-Oakland registries of the Surveillance, Epidemiology, and End Results (SEER) database. The lognormal statistical method to estimate survival was retrospectively validated since the 15-year cause-specific survival rates could be calculated using the standard life-table actuarial method. Estimated rates were compared to the actuarial data available in 2000. Between 1991 and 1995, further 752 and 632 female patients with metastatic breast cancer were extracted respectively from the Connecticut and San Francisco-Oakland registries. The data were analyzed to estimate the 15-year cause-specific survival rates before the year 2005. RESULTS: The 5-year period (1981–1985) was chosen, and patients were followed as a cohort for an additional 3 years. The estimated 15-year cause-specific survival rates were 7.1% (95% confidence interval, CI, 1.8–12.4) and 9.1% (95% CI, 3.8–14.4) by the lognormal model for the two registries of Connecticut and San Francisco-Oakland respectively. Since the SEER database provides follow-up information to the end of the year 2000, actuarial calculation can be performed to confirm (validate) the estimation. The Kaplan-Meier calculation for the 15-year cause-specific survival rates were 8.3% (95% CI, 5.8–10.8) and 7.0% (95% CI, 4.3–9.7) respectively. Using the 1991–1995 5-year period cohort and followed for an additional 3 years, the 15-year cause-specific survival rates were estimated to be 9.1% (95% CI, 3.8–14.4) and 14.7% (95% CI, 9.8–19.6) for the two registries of Connecticut and San Francisco-Oakland respectively. CONCLUSIONS: For the period 1981–1985, the 15-year cause-specific survival for the Connecticut and the San Francisco-Oakland registries were comparable. For the period 1991–1995, there was not much change in survival for the Connecticut registry patients, but there was an improvement in survival for the San Francisco-Oakland registry patients

    Keck spectroscopy and Spitzer Space Telescope analysis of the outer disk of the Triangulum Spiral Galaxy M33

    Get PDF
    In an earlier study of the spiral galaxy M33, we photometrically identified arcs or outer spiral arms of intermediate age (0.6 Gyr - 2 Gyr) carbon stars precisely at the commencement of the HI-warp. Stars in the arcs were unresolved, but were likely thermally-pulsing asymptotic giant branch carbon stars. Here we present Keck I spectroscopy of seven intrinsically bright and red target stars in the outer, northern arc in M33. The target stars have estimated visual magnitudes as faint as V \sim 25 mag. Absorption bands of CN are seen in all seven spectra reported here, confirming their carbon star status. In addition, we present Keck II spectra of a small area 0.5 degree away from the centre of M33; the target stars there are also identified as carbon stars. We also study the non-stellar PAH dust morphology of M33 secured using IRAC on board the Spitzer Space Telescope. The Spitzer 8 micron image attests to a change of spiral phase at the start of the HI warp. The Keck spectra confirm that carbon stars may safely be identified on the basis of their red J-K_s colours in the outer, low metallicity disk of M33. We propose that the enhanced number of carbon stars in the outer arms are an indicator of recent star formation, fueled by gas accretion from the HI-warp reservoir.Comment: 9 pages, 5 figures, accepted in A&

    Short- and long-term cause-specific survival of patients with inflammatory breast cancer

    Get PDF
    BACKGROUND: Inflammatory breast cancer (IBC) had been perceived to have a poor prognosis. Oncologists were not enthusiastic in the past to give aggressive treatment. Single institution studies tend to have small patient numbers and limited years of follow-up. Most studies do not report 10-, 15- or 20-year results. METHODS: Data was obtained from the population-based database of the Surveillance, Epidemiology, and End Results program of the National Cancer Institute from 1975–1995 using SEER*Stat5.0 software. This period of 21 years was divided into 7 periods of 3 years each. The years were chosen so that there was adequate follow-up information to 2000. ICD-O-2 histology 8530/3 was used to define IBC. The lognormal model was used for statistical analysis. RESULTS: A total of 1684 patients were analyzed, of which 84% were white, 11% were African Americans, and 5% belonged to other races. Age distribution was < 30 years in 1%, 30–40 in 11%, 40–50 in 22%, 50–60 in 24%, 60–70 in 21%, and > 70 in 21%. The lognormal model was validated for 1975–77 and for 1978–80, since the 10-, 15- and 20-year cause-specific survival (CSS) rates, could be calculated using the Kaplan-Meier method with data available in 2000. The data were then used to estimate the 10-, 15- and 20-year CSS rates for the more recent years, and to study the trend of improvement in survival. There were increasing incidences of IBC: 134 patients in the 1975–77 period to 416 patients in the 1993–95 period. The corresponding 20-year CSS increased from 9% to 20% respectively with standard errors of less than 4%. CONCLUSION: The improvement of survival during the study period may be due to introduction of more aggressive treatments. However, there seem to be no further increase of long-term CSS, which should encourage oncologists to find even more effective treatments. Because of small numbers of patients, randomized studies will be difficult to conduct. The SEER population-based database will yield the best possible estimate of the trend in improvement of survival for patients with IBC

    Photometric Redshifts of Galaxies in COSMOS

    Get PDF
    We measure photometric redshifts and spectral types for galaxies in the COSMOS survey. We use template fitting technique combined with luminosity function priors and with the option to simultaneously estimate dust extinction (i.e. E(B-V)) for each galaxy.Our estimated redshifts are accurate to i<25 and z~1.2. Using simulations with sampling and noise characteristics similar to those in COSMOS, the accuracy and reliability is estimated for the photometric redshifts as a function of the magnitude limits of the sample, S/N ratios and the number of bands used. From the simulations we find that the ratio of derived 95% confidence interval in the redshift probability distribution to the estimated photometric redshift (D95) can be used to identify and exclude the catastrophic failures in the photometric redshift estimates. We compare the derived redshifts with high-reliability spectroscopic redshifts for a sample of 868 normal galaxies with z < 1.2 from zCOSMOS. Considering different scenarios, depending on using prior, no prior and/or extinction, we compare the photometric and spectroscopic redshifts for this sample. This corresponds to an rms scatter of 0.031, with a small number of outliers (<2.5%). We also find good agreement (rms=0.10) between photometric and spectroscopic redshifts for Type II AGNs. We compare results from our photometric redshift procedure with three other independent codes and find them in excellent agreement. We show preliminary results, based on photometric redshifts for the entire COSMOS sample (to i < 25 mag.).Comment: 38 pages; 14 Figures; 7 Tables. Accepted for Publication in ApJS. COSMOS Special Issu

    Infrared luminosity functions from the Chandra Deep Field South : the Spitzer view on the history of dusty star formation at 0<z<1

    Full text link
    We analyze a sample of ~2600 MIPS/Spitzer 24mic sources brighter than ~80muJy and located in the Chandra Deep Field South to characterize the evolution of the comoving infrared (IR) energy density of the Universe up to z~1. Using published ancillary optical data we first obtain a nearly complete redshift determination for the 24mic objects associated with R<24 counterparts at z<1. We find that the 24mic population at 0.5<z<1 is dominated by ``Luminous Infrared Galaxies'' (i.e., 10^11 L_sol < L_IR < 10^12 L_sol), the counterparts of which appear to be also luminous at optical wavelengths and tend to be more massive than the majority of optically-selected galaxies. We finally derive 15mic and total IR luminosity functions (LFs) up to z~1. In agreement with the previous results from ISO and SCUBA and as expected from the MIPS source number counts, we find very strong evolution of the contribution of the IR-selected population with lookback time. Pure evolution in density is firmly excluded by the data, but we find considerable degeneracy between strict evolution in luminosity and a combination of increases in both density and luminosity (L*_IR prop. to (1+z)^{3.2_{-0.2}^{+0.7}}, Phi*_IR prop. to (1+z)^{0.7_{-0.6}^{+0.2}}). Our results imply that the comoving IR energy density of the Universe evolves as (1+z)^(3.9+/-0.4) up to z~1 and that galaxies luminous in the infrared (i.e., L_IR > 10^11 L_IR) are responsible for 70+/-15% of this energy density at z~1. Taking into account the contribution of the UV luminosity evolving as (1+z)^~2.5, we infer that these IR-luminous sources dominate the star-forming activity beyond z~0.7. The uncertainties affecting these conclusions are largely dominated by the errors in the k-corrections used to convert 24mic fluxes into luminosities.Comment: Accepted for publication in ApJ. 23 pages, 15 figure

    Far Infrared Source Counts at 70 and 160 microns in Spitzer Deep Surveys

    Get PDF
    We derive galaxy source counts at 70 and 160 microns using the Multiband Imaging Photometer for Spitzer (MIPS) to map the Chandra Deep Field South (CDFS) and other fields. At 70 microns, our observations extend upwards about 2 orders of magnitude in flux density from a threshold of 15 mJy, and at 160 microns they extend about an order of magnitude upward from 50 mJy. The counts are consistent with previous observations on the bright end. Significant evolution is detected at the faint end of the counts in both bands, by factors of 2-3 over no-evolution models. This evolution agrees well with models that indicate most ofthe faint galaxies lie at redshifts between 0.7 and 0.9. The new Spitzer data already resolve about 23% of the Cosmic Far Infrared Background at 70 microns and about 7% at 160 microns.Comment: Small modifications to match printed version. Models in Differential Counts plots were changed. MIPS Source Counts are available at: http://lully.as.arizona.edu/GTODeep/Counts/ . Accepted for Publication in ApJS Special Issue on Spitze

    Identification of multiple integrin β1 homologs in zebrafish (Danio rerio)

    Get PDF
    BACKGROUND: Integrins comprise a large family of α,β heterodimeric, transmembrane cell adhesion receptors that mediate diverse essential biological functions. Higher vertebrates possess a single β1 gene, and the β1 subunit associates with a large number of α subunits to form the major class of extracellular matrix (ECM) receptors. Despite the fact that the zebrafish (Danio rerio) is a rapidly emerging model organism of choice for developmental biology and for models of human disease, little is currently known about β1 integrin sequences and functions in this organism. RESULTS: Using RT-PCR, complete coding sequences of zebrafish β1 paralogs were obtained from zebrafish embryos or adult tissues. The results show that zebrafish possess two β1 paralogs (β1–1 and β1–2) that have a high degree of identity to other vertebrate β1 subunits. In addition, a third, more divergent, β1 paralog is present (β1–3), which may have altered ligand-binding properties. Zebrafish also have other divergent β1-like transcripts, which are C-terminally truncated forms lacking the transmembrane and cytoplasmic domains. Together with β1–3 these truncated forms comprise a novel group of β1 paralogs, all of which have a mutation in the ADMIDAS cation-binding site. Phylogenetic and genomic analyses indicate that the duplication that gave rise to β1–1 and β1–2 occurred after the divergence of the tetrapod and fish lineages, while a subsequent duplication of the ancestor of β1–2 may have given rise to β1–3 and an ancestral truncated paralog. A very recent tandem duplication of the truncated β1 paralogs appears to have taken place. The different zebrafish β1 paralogs have varied patterns of temporal expression during development. β1–1 and β1–2 are ubiquitously expressed in adult tissues, whereas the other β1 paralogs generally show more restricted patterns of expression. CONCLUSION: Zebrafish have a large set of integrin β1 paralogs. β1–1 and β1–2 may share the roles of the solitary β1 subunit found in other vertebrates, whereas β1–3 and the truncated β1 paralogs may have acquired novel functions

    Tidal dwarf galaxies in the nearby Universe

    Get PDF
    We present a statistical observational study of the tidal dwarf (TD) population in the nearby Universe, by exploiting a large, homogeneous catalogue of galaxy mergers compiled from the SDSS. 95% of TD-producing mergers involve two spiral progenitors, while most remaining systems have at least one spiral progenitor. The fraction of TD-producing mergers where both parents are early-type galaxies is <2%, suggesting that TDs are unlikely to form in such mergers. The bulk of TD-producing systems inhabit a field environment and have mass ratios greater than 1:7 (the median value is 1:2.5). TDs forming at the tidal-tail tips are ~4 times more massive than those forming at the base of the tails. TDs have stellar masses that are less than 10% of the stellar masses of their parents and typically lie within 15 optical half-light radii of their parent galaxies. The TD population is typically bluer than the parents, with a median offset of ~0.3 mag in the (g-r) colour and the TD colours are not affected by the presence of AGN activity in their parents. An analysis of their star formation histories indicates that TDs contain both newly formed stars (with a median age of ~30 Myr) and old stars drawn from the parent disks, each component probably contributing roughly equally to their stellar mass. Thus, TDs are not formed purely through gas condensation in tidal tails but host a significant component of old stars from the parent disks. Finally, an analysis of the TD contribution to the local dwarf-to-massive galaxy ratio indicates that ~6% of dwarfs in nearby clusters may have a tidal origin, if TD production rates in nearby mergers are representative of those in the high-redshift Universe. Even if TD production rates at high redshift were several factors higher, it seems unlikely that the entire dwarf galaxy population today is a result of merger activity over the lifetime of the Universe.Comment: MNRAS in pres

    The 24 Micron Source Counts in Deep Spitzer Surveys

    Get PDF
    Galaxy source counts in the infrared provide strong constraints on the evolution of the bolometric energy output from distant galaxy populations. We present the results from deep 24 micron imaging from Spitzer surveys, which include approximately 50,000 sources to an 80% completeness of 60 uJy. The 24 micron counts rapidly rise at near-Euclidean rates down to 5 mJy, increase with a super-Euclidean rate between 0.4 - 4 mJy, and converge below 0.3 mJy. The 24 micron counts exceed expectations from non-evolving models by a factor >10 at 0.1 mJy. The peak in the differential number counts corresponds to a population of faint sources that is not expected from predictions based on 15 micron counts from ISO. We argue that this implies the existence of a previously undetected population of infrared-luminous galaxies at z ~ 1-3. Integrating the counts to 60 uJy, we derive a lower limit on the 24 micron background intensity of 1.9 +/- 0.6 nW m-2 sr-1 of which the majority (~ 60%) stems from sources fainter than 0.4 mJy. Extrapolating to fainter flux densities, sources below 60 uJy contribute 0.8 {+0.9/-0.4} nW m-2 sr-1 to the background, which provides an estimate of the total 24 micron background of 2.7 {+1.1/-0.7} nW m-2 sr-1.Comment: Accepted to the ApJS (Spitzer special issue); 5 pages, 3 color figures, uses emulateapj clas
    corecore