169 research outputs found

    Middleborns disadvantaged? testing birth-order effects on fitness in pre-industrial finns

    Get PDF
    Parental investment is a limited resource for which offspring compete in order to increase their own survival and reproductive success. However, parents might be selected to influence the outcome of sibling competition through differential investment. While evidence for this is widespread in egg-laying species, whether or not this may also be the case in viviparous species is more difficult to determine. We use pre-industrial Finns as our model system and an equal investment model as our null hypothesis, which predicts that (all else being equal) middleborns should be disadvantaged through competition. We found no overall evidence to suggest that middleborns in a family are disadvantaged in terms of their survival, age at first reproduction or lifetime reproductive success. However, when considering birth-order only among same-sexed siblings, first-, middle-and lastborn sons significantly differed in the number of offspring they were able to rear to adulthood, although there was no similar effect among females. Middleborn sons appeared to produce significantly less offspring than first-or lastborn sons, but they did not significantly differ from lastborn sons in the number of offspring reared to adulthood. Our results thus show that taking sex differences into account is important when modelling birth-order effects. We found clear evidence of firstborn sons being advantaged over other sons in the family, and over firstborn daughters. Therefore, our results suggest that parents invest differentially in their offspring in order to both preferentially favour particular offspring or reduce offspring inequalities arising from sibling competition

    Subglacial lake drainage detected beneath the Greenland ice sheet

    Get PDF
    The contribution of the Greenland ice sheet to sea-level rise has accelerated in recent decades. Subglacial lake drainage events can induce an ice sheet dynamic response—a process that has been observed in Antarctica, but not yet in Greenland, where the presence of subglacial lakes has only recently been discovered. Here we investigate the water flow paths from a subglacial lake, which drained beneath the Greenland ice sheet in 2011. Our observations suggest that the lake was fed by surface meltwater flowing down a nearby moulin, and that the draining water reached the ice margin via a subglacial tunnel. Interferometric synthetic aperture radar-derived measurements of ice surface motion acquired in 1995 suggest that a similar event may have occurred 16 years earlier, and we propose that, as the climate warms, increasing volumes of surface meltwater routed to the bed will cause such events to become more common in the future

    Defining the Boundaries of Development wih Plasticity

    No full text
    International audienceThe concept of plasticity has always been present in the history of developmental biology, both within the theory of epigenesis and within morphogenesis studies. However this tradition relies also upon a genetic conception of plasticity. Founded upon the concepts of "phenotypic plasticity" and "reaction norm," this genetic conception focuses on the array of possible phenotypic change in relation to diversified environments. Another concept of plasticity can be found in recent publications by some developmental biologists (Gilbert, West-Eberhard). I argue that these authors adopt a "broad conception of plasticity" that is closely related to a notion of development as something that is ongoing throughout an organism's lifecycle, and has no clear-cut boundaries. However, I suggest that given a narrow conception of plasticity, one can define temporal boundaries for development that are linked to specific features of the morphological process, which are different from behavioral and physiological processes

    New perspectives on evolutionary medicine: the relevance of microevolution for human health and disease

    Get PDF
    Evolutionary medicine (EM) is a growing field focusing on the evolutionary basis of human diseases and their changes through time. To date, the majority of EM studies have used pure theories of hominin macroevolution to explain the present-day state of human health. Here, we propose a different approach by addressing more empirical and health-oriented research concerning past, current and future microevolutionary changes of human structure, functions and pathologies. Studying generation-to-generation changes of human morphology that occurred in historical times, and still occur in present-day populations under the forces of evolution, helps to explain medical conditions and warns clinicians that their current practices may influence future humans. Also, analyzing historic tissue specimens such as mummies is crucial in order to address the molecular evolution of pathogens, of the human genome, and their coadaptations.Frank Jakobus Rühli and Maciej Henneber

    Genetic analysis of lung function in inbred mice suggests vitamin D receptor as a candidate gene

    Get PDF
    Vitamin D receptor (VDR) polymorphisms are associated with an increased asthma incidence in human populations; however, observations in Vdr knockout mice are unclear. The aim of our study was to determine the influence of the genetic variation in Vdr among inbred strains on lung resistance (i.e., dynamic and airway resistance). In an intercross between the strains C57BL/6J (B6) and KK/HlJ (KK), we identified that a significant QTL for dynamic resistance on Chr X was interacting with a QTL on Chr 15. The Chr 15 QTL peak was located in close proximity to the Vdr locus. We further examined if phenotypes of several inbred strains with varying Vdr genotypes differed. Strains with a B6-like genotype on the Vdr locus had significantly lower airway resistance than strains with a KK-like genotype. Vdr knockout mice were examined for dynamic resistance and showed significantly higher resistance than mice with one (i.e., heterozygous) or both copies (i.e., wild-type) of the Vdr. In comparison to B6, the strain A/J is more resistant but carries the same genotype at the Vdr locus. Dietary vitamin D manipulation in the strain A/J did not rescue the high airway resistance phenotype. Finally, we observed that serum vitamin D does not correlate significantly with lung resistance parameters in a survey of 18 strains. Conclusively, Vdr contributes to the phenotypic variation of lung resistance in inbred mice but other molecules in the Vdr pathway and extended network [i.e., Chr X gene(s)] may contribute as well

    Superconception in mammalian pregnancy can be detected and increases reproductive output per breeding season

    Get PDF
    The concept of superfetation, a second conception during pregnancy, has been controversial for a long time. In this paper we use an experimental approach to demonstrate that female European brown hares (Lepus europaeus) frequently develop a second pregnancy while already pregnant and thereby increase their reproductive success. After a new, successful copulation, we confirmed additional ovulations before parturition in living, late-pregnant females by detecting a second set of fresh corpora lutea using high-resolution ultrasonography. The presence of early embryonic stages in the oviduct, demonstrated by oviduct flushing, next to fully developed fetuses in the uterus is best explained by passage of semen through the late-pregnant uterus; this was confirmed by paternity analysis using microsatellite profiling. Subsequent implantation occurred after parturition. This superfetation, categorized as superconception, significantly increased litter size and permitted females to produce up to 35.4% more offspring per breeding season. It is therefore most likely an evolutionary adaptation

    Why Are There Social Gradients in Preventative Health Behavior? A Perspective from Behavioral Ecology

    Get PDF
    Background: Within affluent populations, there are marked socioeconomic gradients in health behavior, with people of lower socioeconomic position smoking more, exercising less, having poorer diets, complying less well with therapy, using medical services less, ignoring health and safety advice more, and being less health-conscious overall, than their more affluent peers. Whilst the proximate mechanisms underlying these behavioral differences have been investigated, the ultimate causes have not. Methodology/Principal Findings: This paper presents a theoretical model of why socioeconomic gradients in health behavior might be found. I conjecture that lower socioeconomic position is associated with greater exposure to extrinsic mortality risks (that is, risks that cannot be mitigated through behavior), and that health behavior competes for people’s time and energy against other activities which contribute to their fitness. Under these two assumptions, the model shows that the optimal amount of health behavior to perform is indeed less for people of lower socioeconomic position. Conclusions/Significance: The model predicts an exacerbatory dynamic of poverty, whereby the greater exposure of poor people to unavoidable harms engenders a disinvestment in health behavior, resulting in a final inequality in health outcomes which is greater than the initial inequality in material conditions. I discuss the assumptions of the model, and it

    Does thermoregulatory behavior maximize reproductive fitness of natural isolates of Caenorhabditis elegans?

    Get PDF
    BACKGROUND: A central premise of physiological ecology is that an animal's preferred body temperature should correspond closely with the temperature maximizing performance and Darwinian fitness. Testing this co-adaptational hypothesis has been problematic for several reasons. First, reproductive fitness is the appropriate measure, but is difficult to measure in most animals. Second, no single fitness measure applies to all demographic situations, complicating interpretations. Here we test the co-adaptation hypothesis by studying an organism (Caenorhabditis elegans) in which both fitness and thermal preference can be reliably measured.RESULTS: We find that natural isolates of C. elegans display a range of mean thermal preferences and also vary in their thermal sensitivities for fitness. Hot-seeking isolates CB4854 and CB4857 prefer temperatures that favor population growth rate (r), whereas the cold-seeking isolate CB4856 prefers temperatures that favor Lifetime Reproductive Success (LRS).CONCLUSIONS: Correlations between fitness and thermal preference in natural isolates of C. elegans are driven primarily by isolate-specific differences in thermal preference. If these differences are the result of natural selection, then this suggests that the appropriate measure of fitness for use in evolutionary ecology studies might differ even within species, depending on the unique ecological and evolutionary history of each population.</p
    corecore