140 research outputs found
The role of SARS-CoV-2 aerosol transmission during the COVID-19 pandemic
The COVID-19 pandemic, caused by the virus SARS-CoV-2, has touched most parts of the world and devastated the lives of many. The high transmissibility coupled with the initial poor outcome for the elderly led to crushingly high fatalities. The scientific response to the pandemic has been formidable, aided by advancements in virology, computing, data analysis, instrumentation, diagnostics, engineering and infection control. This has led to improvements in understanding and has helped to challenge some established orthodoxies. Sufficient time has elapsed since the start of the COVID-19 pandemic that a clearer view has emerged about transmission and infection risks, public health responses and related societal and economic impacts. This timely volume has provided an opportunity for the science community to report on these new developments
Seasonal dynamics of the airborne bacterial community and selected viruses in a children's daycare center
Children's daycare centers appear to be hubs of respiratory infectious disease transmission, yet there is only limited information about the airborne microbial communities that are present in daycare centers. We have investigated the microbial community of the air in a daycare center, including seasonal dynamics in the bacterial community and the presence of specific viral pathogens. We collected filters from the heating, ventilation, and air conditioning (HVAC) system of a daycare center every two weeks over the course of a year. Amplifying and sequencing the 16S rRNA gene revealed that the air was dominated by Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes that are commonly associated with the human skin flora. Clear seasonal differences in the microbial community were not evident; however, the community structure differed when the daycare center was closed and unoccupied for a 13-day period. These results suggest that human occupancy, rather than the environment, is the major driver in shaping the microbial community structure in the air of the daycare center. Using PCR for targeted viruses, we detected a seasonal pattern in the presence of respiratory syncytial virus that included the period of typical occurrence of the disease related to the virus; however, we did not detect the presence of adenovirus or rotavirus at any time
The influence of cardiovascular morbidity on the prognosis in prostate cancer. Experience from a 12-year nationwide Danish population-based cohort study
<p>Abstract</p> <p>Background</p> <p>To determine the impact of preexisting ischemic heart disease (IHD) and stroke on overall survival in prostate cancer patients.</p> <p>Methods</p> <p>We conducted a cohort study of patients with incident prostate cancer registered in the Danish Cancer Registry from 1997 through 2008. We identified patients diagnosed with IHD or stroke prior to the date of prostate cancer diagnosis in the Danish National Patient Registry. We constructed Kaplan-Meier curves to analyze time to death and Cox regression was used to estimate hazard ratios (HRs) to compare mortality rates by preexisting IHD or stroke status, adjusting for age, stage, comorbidity, and calendar period.</p> <p>Results</p> <p>Of 30,721 prostate cancer patients, 4,276 (14%) had preexisting IHD and 1,331 (4%) preexisting stroke. Crude 1- and 5-year survival rates were 85% and 44% in men without preexisting IHD or stroke, 81% and 36% in men with preexisting IHD, and 78% and 27% in men with preexisting stroke. Adjusted HRs were 1.05 (95% CI 1.00-1.10) for patients with IHD and 1.20 (95% CI 1.12-1.30) for patients with stroke compared with patients without preexisting IHD or stroke.</p> <p>Conclusions</p> <p>Preexisting IHD had minimal impact on mortality in prostate cancer patients, whereas overall mortality was 20% higher in prostate cancer patients with preexisting stroke compared to those without IHD or stroke. These results highlight the importance of differentiating between various comorbidities.</p
Indications, complications, and outcome of horses undergoing repeated celiotomy within 14 days after the first colic surgery: 95 cases (2005-2013)
Making the invisible visible: searching for human T-cell lymphotropic virus types 1 and 2 (HTLV-1 and HTLV-2) in Brazilian patients with viral hepatitis B and C
Practical Indicators for Risk of Airborne Transmission in Shared Indoor Environments and Their Application to COVID-19 Outbreaks
Some infectious diseases, including COVID-19, can undergo airborne transmission. This may happen at close proximity, but as time indoors increases, infections can occur in shared room air despite distancing. We propose two indicators of infection risk for this situation, that is, relative risk parameter (Hr) and risk parameter (H). They combine the key factors that control airborne disease transmission indoors: virus-containing aerosol generation rate, breathing flow rate, masking and its quality, ventilation and aerosol-removal rates, number of occupants, and duration of exposure. COVID-19 outbreaks show a clear trend that is consistent with airborne infection and enable recommendations to minimize transmission risk. Transmission in typical prepandemic indoor spaces is highly sensitive to mitigation efforts. Previous outbreaks of measles, influenza, and tuberculosis were also assessed. Measles outbreaks occur at much lower risk parameter values than COVID-19, while tuberculosis outbreaks are observed at higher risk parameter values. Because both diseases are accepted as airborne, the fact that COVID-19 is less contagious than measles does not rule out airborne transmission. It is important that future outbreak reports include information on masking, ventilation and aerosol-removal rates, number of occupants, and duration of exposure, to investigate airborne transmission
Impact of Environmental Parameters on Marathon Running Performance
PURPOSE: The objectives of this study were to describe the distribution of all runners' performances in the largest marathons worldwide and to determine which environmental parameters have the maximal impact. METHODS: We analysed the results of six European (Paris, London, Berlin) and American (Boston, Chicago, New York) marathon races from 2001 to 2010 through 1,791,972 participants' performances (all finishers per year and race). Four environmental factors were gathered for each of the 60 races: temperature (°C), humidity (%), dew point (°C), and the atmospheric pressure at sea level (hPA); as well as the concentrations of four atmospheric pollutants: NO(2)-SO(2)-O(3) and PM(10) (μg x m(-3)). RESULTS: All performances per year and race are normally distributed with distribution parameters (mean and standard deviation) that differ according to environmental factors. Air temperature and performance are significantly correlated through a quadratic model. The optimal temperatures for maximal mean speed of all runners vary depending on the performance level. When temperature increases above these optima, running speed decreases and withdrawal rates increase. Ozone also impacts performance but its effect might be linked to temperature. The other environmental parameters do not have any significant impact. CONCLUSIONS: The large amount of data analyzed and the model developed in this study highlight the major influence of air temperature above all other climatic parameter on human running capacity and adaptation to race conditions
Alzheimer disease models and human neuropathology: similarities and differences
Animal models aim to replicate the symptoms, the lesions or the cause(s) of Alzheimer disease. Numerous mouse transgenic lines have now succeeded in partially reproducing its lesions: the extracellular deposits of Aβ peptide and the intracellular accumulation of tau protein. Mutated human APP transgenes result in the deposition of Aβ peptide, similar but not identical to the Aβ peptide of human senile plaque. Amyloid angiopathy is common. Besides the deposition of Aβ, axon dystrophy and alteration of dendrites have been observed. All of the mutations cause an increase in Aβ 42 levels, except for the Arctic mutation, which alters the Aβ sequence itself. Overexpressing wild-type APP alone (as in the murine models of human trisomy 21) causes no Aβ deposition in most mouse lines. Doubly (APP × mutated PS1) transgenic mice develop the lesions earlier. Transgenic mice in which BACE1 has been knocked out or overexpressed have been produced, as well as lines with altered expression of neprilysin, the main degrading enzyme of Aβ. The APP transgenic mice have raised new questions concerning the mechanisms of neuronal loss, the accumulation of Aβ in the cell body of the neurons, inflammation and gliosis, and the dendritic alterations. They have allowed some insight to be gained into the kinetics of the changes. The connection between the symptoms, the lesions and the increase in Aβ oligomers has been found to be difficult to unravel. Neurofibrillary tangles are only found in mouse lines that overexpress mutated tau or human tau on a murine tau −/− background. A triply transgenic model (mutated APP, PS1 and tau) recapitulates the alterations seen in AD but its physiological relevance may be discussed. A number of modulators of Aβ or of tau accumulation have been tested. A transgenic model may be analyzed at three levels at least (symptoms, lesions, cause of the disease), and a reading key is proposed to summarize this analysis
Infectious diseases in allogeneic haematopoietic stem cell transplantation: prevention and prophylaxis strategy guidelines 2016
- …
