19 research outputs found

    HEMP: High-order entropy minimization for neural network compression

    Get PDF
    We formulate the entropy of a quantized artificial neural network as a differentiable function that can be plugged as a regularization term into the cost function minimized by gradient descent. Our formulation scales efficiently beyond the first order and is agnostic of the quantization scheme. The network can then be trained to minimize the entropy of the quantized parameters, so that they can be optimally compressed via entropy coding. We experiment with our entropy formulation at quantizing and compressing well-known network architectures over multiple datasets. Our approach compares favorably over similar methods, enjoying the benefits of higher order entropy estimate, showing flexibility towards non-uniform quantization (we use Lloyd-max quantization), scalability towards any entropy order to be minimized and efficiency in terms of compression. We show that HEMP is able to work in synergy with other approaches aiming at pruning or quantizing the model itself, delivering significant benefits in terms of storage size compressibility without harming the model's performance

    Development of a 3D multispectral scanner

    Get PDF
    In this paper, a new technique of scanning is proposed. It is based on a stereoscopic set composed of a structured light projector and a multispectral camera. Such a set can give the 3D information of a point like a scanner but can add accurate information about the spectral reflectance of this point. This set must be calibrated before using it. It is done by two steps: the first one is the spectral characterization of the couple illuminant and camera ; the second allows geometrically calibrating the complete set. Afterwards, the image acquisition can begin. A first multispectral image of the scene is obtained without projection of structured light. Then, with a LCD projector, a luminous line scans the scene. For each line, a grey level image is acquired. The use of the geometrical calibration parameters allows the processing of the three-dimensional coordinates of the lighted points on the scene. Moreover, and it is the main goal of the proposed system, a spectral reflectance can be associated to the built points. This spectral data comes, on one hand, from the already-done spectral characterization, and, on the other hand, from the first multispectral image acquired without projection of structured light. By comparing the results issued from such a system and those from a system composed of a color camera or a color scanner, we notice that the spectrum associated to the three-dimensional points brings much more informative data than only three color components: for example, since the spectral reflectance is independent of the light used during the acquisition, the 3D scene can be easily simulated under any illuminant. This kind of simulations finds a great interest in several multimedia applications such as 3D objects visualization for virtual museums.Dans cet article, une nouvelle technique de scanning est proposée. Elle est basée sur un système stéréoscopique composé d’un projecteur de lumière structurée et d’une caméra multispectrale. Un tel système offre la possibilité de donner l’information 3D d’un point comme pour un scanner classique mais également de fournir une information précise sur le spectre de réflectance de ce point. Avant utilisation, il est nécessaire de calibrer l’ensemble. Le calibrage se déroule en deux étapes : la première d’entre elles consiste à caractériser la réponse spectrale de l’ensemble illuminant et caméra, la seconde permet de le calibrer géométriquement. A ce stade, l’analyse de la scène à reconstruire consiste, en premier lieu, en l’acquisition d’une unique image multispectrale de la scène sans projection de motif caractéristique. Ensuite, à l’aide d’un projecteur LCD, une ligne de lumière est projetée en balayage sur la scène. Pour chaque projection de ligne, une image en niveaux de gris est acquise. L’utilisation des paramètres de calibrage géométrique permet de remonter aux coordonnées tridimensionnelles des points illuminés de la scène. De plus, et c’est ici que réside l’apport principal du système proposé, un spectre de réflectance est associé à chacun des points reconstruits. Cette information spectrale provient d’une part, de la caractérisation spectrale préalablement effectuée et d’autre part, de la première image multispectrale acquise sans projection de lumière structurée. Si l’on compare les résultats obtenus avec un tel système et ceux issus d’un système composé d’une caméra couleur ou d’un scanner couleur, on remarque que le spectre associé aux points tridimensionnels apporte une information considérablement plus riche qu’un simple triplet de composantes chromatiques : par exemple, l’information spectrale étant indépendante de l’illuminant utilisé pendant l’acquisition, la scène 3D reconstruite peut être aisément simulée sous un illuminant quelconque. Ce genre de simulations trouve son intérêt dans des applications multimédias de type visualisation d’objets 3D pour des musées virtuels

    Une méthode pour le prétraitement et le calcul de matrices de crosstalk pour des images couleur issues d'une caméra tri-CCD

    Get PDF
    - Ce travail s'inscrit comme outil dans le cadre de la reconstruction 3D à l'aide d'une projection de lumière structurée couplée à une caméra 3CCD. Le principe est simple : il faut disposer une caméra 3CCD et un vidéo-projecteur comme un système de stéréovision classique, devant la scène à étudier. L'utilisation d'une lumière structurée lève beaucoup d'ambiguïtés par rapport à un système de stéréovision à deux caméras. Par contre, l'utilisation de la couleur pour coder la projection réduit le champ d'action du système aux objets blancs ou pâles. Pour pouvoir déterminer la couleur en même temps que la reconstruction 3D de l'objet, il faut avoir des images couleurs parfaitement nettoyées. Nous allons donc décrire une méthode de prétraitements des images couleurs issues de la caméra 3CCD utilisée. Les images ainsi traitées peuvent être utilisées dans le modèle couleur que nous suivrons pour remonter aux informations de couleur de l'éclairage structuré pour lever les ambiguïtés de mise en correspondance, ainsi qu 'à la couleur de la scène aux points considérés

    Paleoclimatic control of biogeographic and sedimentary events in Tethyan and peri-Tethyan areas during the Oxfordian (Late Jurassic)

    Full text link

    The depth of pelagic deposits in the Tethyan Jurassic and the use of corals: an example from the Apennines

    No full text
    Assessing the palaeobathymery of pelagic deposits is rather speculative, as proof through lithology or fossils significant for depth estimates is sparse. This is unfortunate as the bathymetric history of pelagic successions allows to conceive the evolution of continental margins and oceanic basins. Discoveries in coral biology bring an unexpected impact on basin analysis. Evidence strongly suggests that pennular corals, fossil and modem, constitute a zooxanthellate group with an outstanding specialization in colonizing deeper parts of the marine photic zone. This adaptation includes light amplification by autofluorescent pigmented cells, and particular feeding, witnessed by peculiar gastric ducts and skeletal features. Such corals occur in the Umbria-Marche and Sabina Apennines on top of Late Jurassic submarine highs and at basin margins. Values of palaeodepth relative to pelagic deposits are provided by corals and other environmental data. Because depth reconstruction involves classical Tethyan facies, such as Ammonitico Rosso, Aptychus limestone and radiolarian cherts, we must note that these results do not meet with actualistic models relying on carbonate dissolution for estimating depth. Deposits viewed as bathyal to abyssal could also have accumulated within, or just below, the photic zone. Thus, a new insight opens on Mesozoic bathymetries, regarding vast areas (Middle East to Caribbean) and on subjects ranging from platform drowning to regional extension styles. (C) 2004 Elsevier B.V. All rights reserved

    Paleoclimatic control of biogeographic and sedimentary events in Tethyan and peri-Tethyan areas during the Oxfordian (Late Jurassic)

    No full text
    International audienceThe paleobiogeographical distribution of Oxfordian ammonites and coral reefs in northern and Central Europe, the Mediterranean area, North and East Africa, and the Middle East and Central Asia is compared with the distribution in time and space of the most important lithofacies. Interest in the Oxfordian is focused on changes in facies and in biogeographical patterns that can be interpreted as the results of climatic events. Paleotemperature trends inferred from oxygen isotopes and paleoclimatic simulations are tested against fossil and facies data. A Late Callovian–Early Oxfordian crisis in carbonate production is indicated by the widespread absence of Lower Oxfordian reefal formations. There is a gap (hiatus) in deposition on epicontinental platforms, with Middle Oxfordian deposits resting paraconformably on Upper Callovian, while shales accumulated in adjacent intracratonic basins. Simultaneously, in Mediterranean Tethys, radiolarites accumulated in deep troughs while Rosso Ammonitico facies formed on pelagic swells. However, deposition on swells was also discontinuous with numerous gaps (hiatuses) and sequences that are much reduced in thickness. Middle Callovian deposits are generally overlain by Middle Oxfordian limestones. The dearth of carbonates is consistent with a cooling event lasting about 1 My. By the middle Oxfordian a warming, leading to bgreenhouseQ type conditions, is suggested on the basis of both biogeographical (mostly coral-reef distribution) and geochemical data. Carbonates spread onto an extensive European platform while radiolarites reached a maximum development in the Mediterranean Tethys. Two distinct latitudinal belts, with seemingly different accumulation regimes, are therefore inferred. Similar latitudinal belts were also present in the late Oxfordian, when carbonates were widespread. The distribution of reefal facies in the late Oxfordian–early Kimmeridgian fits relatively well with GCMs simulations that imply low rainfall in the Tethyan Mediterranean area and slightly higher precipitation in central and northern Europe. Local salinity variations, reflecting more arid or humid conditions, may bias the paleotemperature signal inferred from Palaeogeography, Palaeoclimatology, Palaeoecology 222 (2005) 10 – 32 www.elsevier.com/locate/palaeo d 18 O values. Biogeographical and facies distributions, combined with d 18 O values, unravel the ambiguity and support a Late Callovian–Early Oxfordian cooling followed by warming in the later Oxfordian

    Poleward along-shore current pulses on the inner shelf of the Bay of Biscay

    No full text
    We analyzed strong events of coastal poleward along-shore currents above 10 cm s−1 and up to more than 50 cm s−1 on the inner shelf (50-80 m depth) of the Bay of Biscay (BoB) from the Spanish coast to the Brittany coast. We used data from four acoustic Doppler current profilers (ADCPs) deployed from July 2009 to August 2011. The goal of this study was to analyze current variability at meso- and subinertial scales and their generation mechanisms. These currents occurred all year long and were classified into three types. Events occurring principally in the southern part of the BoB were classified as southern events. Bay-scale events were defined when strong poleward currents were detected over all the shelf, typically stronger on the Spanish and the southern Brittany shelves. Strong events were characterized by depth averaged current velocities over 40 cm s−1 in the southern part of the BoB. At short time lags, the along-shore currents were clearly related to along-shore wind stress at upstream locations. An explanation is provided for longer time lags in terms of coastal trapped wave (CTW) dynamics. The first CTW mode phase speeds were in agreement with the propagation speeds of the fastest events (> 5 m s−1), while inner shelf modes could explain the slowest events (∼ 1-3 m s−1). The cross-shelf density gradient and the extension of the IPC were also associated with strong coastal poleward along-shore currents. The duration of the events, the vertical structure of the currents and the associated coastal trapped waves were studied in relation with the stratification

    Coral-sponge-microencruster-microbialite associations in the Upper Jurassic reef: quantitative characterization of a case study from Eastern Sardinia (Italy)

    No full text
    The Late Jurassic records one of the largest reefal expansions of the Phanerozoic, with major diffusion and differentiation in the Tethys realm (WOOD, 1999; KIESSLING, 2002; CECCA et al., 2005). Several depositional and compositional models about Upper Jurassic reef types (see INSALACO et al.,1997; LEINFELDER et al., 2002, 2005; RUSCIADELLI et al., 2011 for a revision) have been published but little knowledge is available about the Eastern Sardinian reefs. This study focuses on the compositional and sedimentological characterization of the Upper Tithonian reef complex presently exposed in the area of Cala Gonone (Orosei Gulf) (Fig.1). The Upper Jurassic carbonate succession of Eastern Sardinia consists of three Bathonian-Callovian to Berriasian (DIENI & MASSARI, 1985; JADOUL et al., 2010 and references therein) carbonate depositional systems developed on the southern Europe passive margin (Fig.1): 1) the first (Dorgali Fm.) is characterized by ooidal grainstone, accumulated above wave base on structural highs (Variscan basement), capped by an Upper Bathonian-Callovian condensed succession with a few Fe-phosphatic hardgrounds; 2) a low-angle Oxfordian-upper Tithonian depositional system: the shallow ramp deposition (Tului Fm.) is characterized by basal oolitic facies overlain by prograding coral-stromatoporoid reefs, interfingering with outer ramp-basinal peloidal packstone-wackestone (S\u2019Adde and Baunei Fms.); 3) the third depositional carbonate system (Bardia Fm.) developed after an Early Tithonian regressive trend, locally marked by carbonate breccias indicative of subaerial exposure. The lower part of the Bardia Fm. (upper Tithonian) is locally characterized by gentle slopes (3-15\ub0) with bioclastic-coral-sponge facies associations (LANFRANCHI et al., 2011). This progradational unit is followed by up to 400-500 m of back reef and inner platform shallow water carbonates.REEF COMPONENTS AND FACIES Compositional and sedimentological analysis of the Bardia reef has been carried out through the combination of \u201cmacroscopic\u201d (outcrop-scale) and \u201cmicroscopic\u201d (microfacies-scale) observations on exceptionally exposed saw-cut quarry walls, over a surface of a few hundreds square metres in three different locations. The external surface of each macroscopically detectable component has been emphasized on the quarry walls (Fig.2). The areal distribution of each portion has been stored as vector images, defining frequency, density and area occupied by the reef components. Microfacies and paleontological analyses have been performed on 280 thin sections. Reef components were grouped into three broad categories: 1) macroscopically detectable organisms (mainly corals, sponges, bivalves, gastropods, echinoderms); 2) microscopically detectable components (microencrusters and microbialites); 3) fine- to coarse bioclastic debris and mud-supported facies. Corals show different degree of reworking, from in life-position skeletons more than 2.5 m2 in size to centimetre-sized rubble. The 49 recognized genera of corals have been classified according to external morphology and corallite type. Calcified sponges (Stromatoporoids) are a few centimetres to tens of centimetres in size, occurring as isolated specimens and in densely-packed assemblages. Siliceous sponges and spiculae are replaced respectively by precipitated automicrite and calcite spar. Microbialite and microencruster organisms form domal, columnar or irregular accretionary crusts, few millimetres to several centimetres in thickness. Frequently, crusts bind neighbouring skeletons of large biota, developing metre-scale bioconstructions. These components combine in various proportions within and among quarries, reflecting abrupt lateral and vertical changes of environmental conditions. Quarry 1 is characterized by large branched and massive coral colonies partially or totally encrusted by centimetre thick microencruster crusts and well-washed bioclastic facies, indicating sediment reworking in a high\u2013energy environment. This facies abruptly passes laterally into a densely packed massive microsolenid coral and calcareous sponge assemblage and microbialite and microencruster (Tubiphytes. and other nubeculariids) boundstone. Microsolenid assemblages are commonly interpreted to have formed in deeper water (LATHULI\uc8RE & GILL, 1995; GILL et al., 2004) or alternatively related to poorly illuminated shallow-water cave environments, and adapted to low-sedimentation, low-energy and nutrient-rich conditions (INSALACO, 1996; DUPRAZ & STRASSER, 2002). Quarry 2 is characterized by progressive vertical variations from facies dominated by densely packed platy and flat coral colonies (microsolenids and others) to facies dominated by calcareous sponges and loosely packed phaceloid coral colonies. Microbialite and microencrusters (Tubiphytes and other nubeculariids) envelope and bind large biota. Platy growth forms are generally interpreted as a response to poor illumination (INSALACO, 1996). Consequently the whole association seems to be compatible with poorly illuminated water, low sedimentation rate in a low energy environment. Quarry 3 records large scale bedding (from 1 m to several metres) defined by six intervals dominated respectively by 1) bivalves; 2) dasycladacean algae; 3) reworked massive thamnasterioid coral colonies; 4) thin phaceloid corals and calcareous sponges in growth position; 5) branched ramose coral colonies and calcareous sponges; 6) reworked massive plocoid coral colonies and gastropods. Large biota within intervals 3, 4 and 5 are largely encrusted by different microencrusters such as Koskinobulina, Thaumatoporella, light-dependent Lithocodium-Bacinella, and microbial accrectionary crust. Coral assemblages and microencruster association reveal a progressive increasing of the energy regime and sediment reworking in well-lit waters (INSALCO, 1996; SCHIMD & LEINFELDER, 2002), while the presence of bivalve, algae and gastropod floatstone represents the temporary shifting to \u201cperi-reefal\u201d environments. Despite variability of facies associations in the three quarries, a paleoecological evolution from quarry 1 to quarry 3 emerges, reflecting the change from moderate energy environment with more protected, poorly illuminated cave environment (quarry 1), through a low energy, poorly illuminated environment characterized by low sedimentation rate (quarry 2), to a high energy, well illuminated environment, characterized by high sedimentation rate and reworking (quarry 3). The relative position of the studied quarries along an ideal depositional profile remains speculative, although a medium-scale progradational trend, from distal to proximal setting, seems to be compatible with the long-scale stratigraphic trend of the Bardia Fm. Spectacular outcrop conditions, amount of data collected, biota taxonomic classifications and the observed stratigraphic evolution provide the solid base for paleo-biogeographical comparisons with other Upper Jurassic Tethyan reef complexes. REFERENCES CECCA F., GARIN M., MARCHAND D., LATHUILIERE B. & BARTOLINI A. (2005). Paleoclimatic control of biogeographic and sedimentary events in Tethyan and peri-Tethyan areas during the Oxfordian (Late Jurassic). Pal.Pal.Pal., 222, 10\u201332. DIENI I. & MASSARI F. (1985). Mesozoic of Eastern Sardinia. In: Cherchi A. (ed.), 19th European Micropaleontological Colloquium. Sardinia, October 1-10. Micropaleontological researches in Sardinia. Guidebook, 66-77. DUPRAZ C. & STRASSER A. (2002) Nutritional modes in coral-microbialite reefs (Jurassic, Oxfordian, Switzerland): evolution of trophic structure as a response to environmental change. Palaios 17, 449-471. GILL G., SANTANTONIO M. & LATHUILI\uc8RE B. (2004). The depth of pelagic deposits in the Tethyan Jurassic and the use of corals: an example from the Apennines. Sedimentary Geology, 166, (3-4), 311\u2013334. INSALACO E. (1996) Upper Jurassic microsolenids biostromes of northern and central Europe: facies and depositional environment. Pal. Pal. Pal., 121, 169\u2013194. INSALACO E., HALLAM A. & ROSEN B.R. (1997). Oxfordian (Upper Jurassic) coral reefs in western Europe: reef types and conceptual depositional model. Sedimentology 44, 707\u2013734. JADOUL F., LANFRANCHI A., CASELLATO C.E., BERRA F. & ERBA E. (2010). I sistemi carbonatici giurassici della Sardegna orientale (Golfo di Orosei). In Geol.F.Trips of ISPRA and Societ\ue0 Geologica Italiana Vol. 2, 122 pp. KIESSLING,W. (2002). Secular variations in the Phanerozoic reef systems. In: Kiessling,W., Fl\ufcgel, E., Golonka, J. (Eds.), Phanerozoic Reef Patterns: SEPM, Spec. Publ., 72, 625\u2013690. LATHULI\uc8RE B. & GILL G. (1995). Some new suggestions on functional morphology in pennular corals. In: B Lathuili\ue8re, J Geister (Eds.), Coral Reefs in Past, Present and Future. Proceeding of the 2nd European Meeting of the International Society for Reef Studies, Publications du Service G\ue9ologique du Luxembourg, 29, 259\u2013264 LANFRANCHI A., BERRA F. & JADOUL F. (2011). Compositional changes in sigmoidal carbonate clinoforms (Late Tithonian, eastern Sardinia, Italy): insights from quantitative microfacies analyses. Sedimentology 58, 2039\u20132060 LEINFELDERR.R., SCHLAGINTWEIT F., WERNER W., EBLI O., NOSE,M., SCHMID D.U. & HUGHES G.W. (2005). Signi\ufb01cance of stromatoporoids in Jurassic reefs and carbonate platforms\u2014concepts and implications. Facies 51, 287\u2013325. LEINFELDER R.R., SCHMID D.U., NOSE M. & WERNER W. (2002). Jurassic reef patterns. The expression of a changing globe. In: Kiessling, W., Fl\ufcgel, E., Golonka, J. (Eds.), Phanerozoic Reef Patterns: SEPM Spec Publ, 72,. 465\u2013520. RUSCIADELLI G., RICCI C., LATHUILI\uc8RE B. (2011) The Ellipsactinia Limestones of the Marsica area (Central Apennines): A reference zonation model for Upper Jurassic Intra-Tethys reef complexes. Sed. Geol., 233, 69\u201387 WOOD, R.A. (1999). Reef Evolution. Oxford University Press

    Lentiviral Vectors for the Engineering of Implantable Cells Secreting Recombinant Antibodies

    No full text
    The implantation of genetically modified cells is considered for the chronic delivery of therapeutic recombinant proteins in vivo. In the context of gene therapy, the genetic engineering of cells faces two main challenges. First, it is critical to generate expandable cell sources, which can maintain stable high productivity of the recombinant protein of interest over time, both in culture and after transplantation. In addition, gene transfer techniques need to be developed to engineer cells synthetizing complex polypeptides, such as recombinant monoclonal antibodies, to broaden the range of potential therapeutic applications. Here, we provide a workflow for the use of lentiviral vectors as a flexible tool to generate antibody-producing cells. In particular, lentiviral vectors can be used to genetically engineer the cell types compatible with encapsulation devices protecting the implanted cells from the host immune system. Detailed methods are provided for the design and production of lentiviral vectors, optimization of cell transduction, as well as for the quantification and quality control of the produced recombinant antibody
    corecore