1,751 research outputs found

    Nuclear Equation of State from Observations of Short Gamma-Ray Burst Remnants

    Get PDF
    The favoured progenitor model for short γ\gamma-ray bursts (SGRBs) is the merger of two neutron stars that triggers an explosion with a burst of collimated γ\gamma-rays. Following the initial prompt emission, some SGRBs exhibit a plateau phase in their XX-ray light curves that indicates additional energy injection from a central engine, believed to be a rapidly rotating, highly magnetised neutron star. The collapse of this `protomagnetar' to a black hole is likely to be responsible for a steep decay in XX-ray flux observed at the end of the plateau. In this letter, we show that these observations can be used to effectively constrain the equation of state of dense matter. In particular, we show that the known distribution of masses in binary neutron star systems, together with fits to the XX-ray light curves, provide constraints that exclude the softest and stiffest plausible equations of state. We further illustrate how a future gravitational wave observation with Advanced LIGO/Virgo can place tight constraints on the equation of state, by adding into the picture a measurement of the chirp mass of the SGRB progenitor.Comment: accepted for publication in Phys. Rev.

    Stability and Quasinormal Modes of Black holes in Tensor-Vector-Scalar theory: Scalar Field Perturbations

    Full text link
    The imminent detection of gravitational waves will trigger precision tests of gravity through observations of quasinormal ringing of black holes. While General Relativity predicts just two polarizations of gravitational waves, the so-called plus and cross polarizations, numerous alternative theories of gravity predict up to six different polarizations which will potentially be observed in current and future generations of gravitational wave detectors. Bekenstein's Tensor-Vector-Scalar (TeVeS) theory and its generalization fall into one such class of theory that predict the full gamut of six polarizations of gravitational waves. In this paper we begin the study of quasinormal modes (QNMs) in TeVeS by studying perturbations of the scalar field in a spherically symmetric background. We show that, at least in the case where superluminal propagation of perturbations is not present, black holes are generically stable to this kind of perturbation. We also make a unique prediction that, as the limit of the various coupling parameters of the theory tend to zero, the QNM spectrum tends to 1/21/\sqrt{2} times the QNM spectrum induced by scalar perturbations of a Schwarzschild black hole in General Relativity due to the intrinsic presence of the background vector field. We further show that the QNM spectrum does not vary significantly from this value for small values of the theory's coupling parameters, however can vary by as much as a few percent for larger, but still physically relevant parameters.Comment: Published in Physical Review

    Timing analysis for 20 millisecond pulsars in the Parkes Pulsar Timing Array

    Get PDF
    We present timing models for 20 millisecond pulsars in the Parkes Pulsar Timing Array. The precision of the parameter measurements in these models has been improved over earlier results by using longer data sets and modelling the non-stationary noise. We describe a new noise modelling procedure and demonstrate its effectiveness using simulated data. Our methodology includes the addition of annual dispersion measure (DM) variations to the timing models of some pulsars. We present the first significant parallax measurements for PSRs J1024-0719, J1045-4509, J1600-3053, J1603-7202, and J1730-2304, as well as the first significant measurements of some post-Keplerian orbital parameters in six binary pulsars, caused by kinematic effects. Improved Shapiro delay measurements have resulted in much improved pulsar mass measurements, particularly for PSRs J0437-4715 and J1909-3744 with Mp=1.44±0.07M_p=1.44\pm0.07 M⊙M_\odot and Mp=1.47±0.03M_p=1.47\pm0.03 M⊙M_\odot respectively. The improved orbital period-derivative measurement for PSR J0437-4715 results in a derived distance measurement at the 0.16% level of precision, D=156.79±0.25D=156.79\pm0.25 pc, one of the most fractionally precise distance measurements of any star to date.Comment: 21 pages, 5 figures, 7 tables. Accepted for publication in MNRA

    Confucian Principles: A Study of Chinese Americans’ Interpersonal Relationships in Selected Children’s Picturebooks

    Get PDF
    [[abstract]]There has not been enough critical analysis of children’s literature by and about Chinese Americans, especially when compared to other minority groups in the United States. In particular, Chinese American historical books lack extensive analysis. It is important to reflect cultural accuracy in literature and to help children develop clear concepts of self and others by providing precise cultural and physical characteristics of people. While cultural authenticity allows children the opportunity to see a reflection of real experiences within a book instead of seeing stereotypes or misrepresentations, obtaining correct information about a certain time period can help children to see images of immigration accurately represented in literature. Using the Confucian delineation of interpersonal relationships as the major criterion of cultural authenticity, this article examines three currently available children’s picturebooks set in the historical period between 1848 and 1885. In addition to exploring how Chinese Americans’ interpersonal relationships are portrayed in these children’s historical books, this article argues for more proactive inclusion of the diversity in selection of picturebooks.[[notice]]補正完

    CMB observations in LTB universes: Part I: Matching peak positions in the CMB spectrum

    Full text link
    Acoustic peaks in the spectrum of the cosmic microwave background in spherically symmetric inhomogeneous cosmological models are studied. At the photon-baryon decoupling epoch, the universe may be assumed to be dominated by non-relativistic matter, and thus we may treat radiation as a test field in the universe filled with dust which is described by the Lema\^itre-Tolman-Bondi (LTB) solution. First, we give an LTB model whose distance-redshift relation agrees with that of the concordance Λ\LambdaCDM model in the whole redshift domain and which is well approximated by the Einstein-de Sitter universe at and before decoupling. We determine the decoupling epoch in this LTB universe by Gamow's criterion and then calculate the positions of acoustic peaks. Thus obtained results are not consistent with the WMAP data. However, we find that one can fit the peak positions by appropriately modifying the LTB model, namely, by allowing the deviation of the distance-redshift relation from that of the concordance Λ\LambdaCDM model at z>2z>2 where no observational data are available at present. Thus there is still a possibility of explaining the apparent accelerated expansion of the universe by inhomogeneity without resorting to dark energy if we abandon the Copernican principle. Even if we do not take this extreme attitude, it also suggests that local, isotropic inhomogeneities around us may seriously affect the determination of the density contents of the universe unless the possible existence of such inhomogeneities is properly taken into account.Comment: 20 pages, 5 figure

    Reversible binding of platelet-derived growth factor-AA, -AB, and -BB isoforms to a similar site on the "slow" and "fast" conformations of alpha 2-macroglobulin.

    Get PDF
    The mechanism by which the platelet-derived growth factor (PDGF)-binding protein, alpha 2-macroglobulin (alpha 2M), modulates PDGF bioactivity is unknown, but could involve reversible PDGF-alpha 2M binding. Herein we report that greater than 70% of 125I-PDGF-BB or -AB complexed to alpha 2M was dissociated by SDS-denaturation followed by SDS-polyacrylamide gel electrophoresis, i.e. most of the binding was noncovalent. Reduction of the PDGF.alpha 2M complex following denaturation dissociated the cytokine from alpha 2M by greater than 90%, suggesting covalent disulfide bond formation. Approximately 50% of the growth factor was dissociated by lowering the pH from 7.5 to 4.0. 125I-PDGF-BB bound alpha 2M in a time-dependent manner (t1/2 = approximately 1 h), reaching equilibrium after 4 h. The 125I-PDGF.BB/alpha 2M complex dissociated more slowly (t1/2 = approximately 2.5 h). "Slow" and "fast" alpha 2M bound nearly equal amounts of PDGF-AB or -BB. Trypsin treatment converted PDGF-BB/alpha 2M complex to the fast conformation but did not release bound 125I-PDGF-BB. All PDGF-isoforms (AA, -AB, and -BB) competed for binding with 125I-PDGF-BB binding to slow alpha 2M and fast alpha 2M-methylamine by 65-80%. Other cytokines that bind alpha 2M (transforming growth factor-beta 1 and -beta 2, tumor necrosis factor-alpha, basic fibroblast growth factor, interleukin -1 beta, and -6) did not compete for 125I-PDGF-BB binding slow alpha 2M, but transforming growth factor-beta 1 and basic fibroblast growth factor inhibited 125I-PDGF-BB binding alpha 2M-methylamine by 30-50%. The reversible nature of the PDGF.alpha 2M complex could allow for targeted PDGF release near mesenchymal cells which possess PDGF receptors

    Landscape transcriptomics as a tool for addressing global change effects across diverse species

    Get PDF
    Landscape transcriptomics is an emerging field studying how genome-wide expression patterns reflect dynamic landscape-scale environmental drivers, including habitat, weather, climate, and contaminants, and the subsequent effects on organismal function. This field is benefitting from advancing and increasingly accessible molecular technologies, which in turn are allowing the necessary characterization of transcriptomes from wild individuals distributed across natural landscapes. This research is especially important given the rapid pace of anthropogenic environmental change and potential impacts that span levels of biological organization. We discuss three major themes in landscape transcriptomic research: connecting transcriptome variation across landscapes to environmental variation, generating and testing hypotheses about the mechanisms and evolution of transcriptomic responses to the environment, and applying this knowledge to species conservation and management. We discuss challenges associated with this approach and suggest potential solutions. We conclude that landscape transcriptomics has great promise for addressing fundamental questions in organismal biology, ecology, and evolution, while providing tools needed for conservation and management of species

    Improving pulsar-timing solutions through dynamic pulse fitting

    Full text link
    Precision pulsar timing is integral to the detection of the nanohertz stochastic gravitational-wave background as well as understanding the physics of neutron stars. Conventional pulsar timing often uses fixed time and frequency-averaged templates to determine the pulse times of arrival, which can lead to reduced accuracy when the pulse profile evolves over time. We illustrate a dynamic timing method that fits each observing epoch using basis functions. By fitting each epoch separately, we allow for the evolution of the pulse shape epoch to epoch. We apply our method to PSR J1103−-5403 and demonstrate that it undergoes mode changing, making it the fourth millisecond pulsar to exhibit such behaviour. Our method, which is able to identify and time a single mode, yields a timing solution with a root-mean-square error of 1.343 μs\mu \mathrm{s}, a factor of 1.78 improvement over template fitting on both modes. In addition, the white-noise amplitude is reduced 4.3 times, suggesting that fitting the full data set causes the mode changing to be incorrectly classified as white noise. This reduction in white noise boosts the signal-to-noise ratio of a gravitational-wave background signal for this particular pulsar by 32%. We discuss the possible applications for this method of timing to study pulsar magnetospheres and further improve the sensitivity of searches for nanohertz gravitational waves.Comment: Accepted in MNRAS, 8 pages, 8 figure

    The Cosmic Microwave Background in an Inhomogeneous Universe - why void models of dark energy are only weakly constrained by the CMB

    Full text link
    The dimming of Type Ia supernovae could be the result of Hubble-scale inhomogeneity in the matter and spatial curvature, rather than signaling the presence of a dark energy component. A key challenge for such models is to fit the detailed spectrum of the cosmic microwave background (CMB). We present a detailed discussion of the small-scale CMB in an inhomogeneous universe, focusing on spherically symmetric `void' models. We allow for the dynamical effects of radiation while analyzing the problem, in contrast to other work which inadvertently fine tunes its spatial profile. This is a surprisingly important effect and we reach substantially different conclusions. Models which are open at CMB distances fit the CMB power spectrum without fine tuning; these models also fit the supernovae and local Hubble rate data which favours a high expansion rate. Asymptotically flat models may fit the CMB, but require some extra assumptions. We argue that a full treatment of the radiation in these models is necessary if we are to understand the correct constraints from the CMB, as well as other observations which rely on it, such as spectral distortions of the black body spectrum, the kinematic Sunyaev-Zeldovich effect or the Baryon Acoustic Oscillations.Comment: 23 pages with 14 figures. v2 has considerably extended discussion and analysis, but the basic results are unchanged. v3 is the final versio
    • …
    corecore