The favoured progenitor model for short γ-ray bursts (SGRBs) is the
merger of two neutron stars that triggers an explosion with a burst of
collimated γ-rays. Following the initial prompt emission, some SGRBs
exhibit a plateau phase in their X-ray light curves that indicates additional
energy injection from a central engine, believed to be a rapidly rotating,
highly magnetised neutron star. The collapse of this `protomagnetar' to a black
hole is likely to be responsible for a steep decay in X-ray flux observed at
the end of the plateau. In this letter, we show that these observations can be
used to effectively constrain the equation of state of dense matter. In
particular, we show that the known distribution of masses in binary neutron
star systems, together with fits to the X-ray light curves, provide
constraints that exclude the softest and stiffest plausible equations of state.
We further illustrate how a future gravitational wave observation with Advanced
LIGO/Virgo can place tight constraints on the equation of state, by adding into
the picture a measurement of the chirp mass of the SGRB progenitor.Comment: accepted for publication in Phys. Rev.