25,116 research outputs found

    Stellar magnetic cycles

    Full text link
    The solar activity cycle is a manifestation of the hydromagnetic dynamo working inside our star. The detection of activity cycles in solar-like stars and the study of their properties allow us to put the solar dynamo in perspective, investigating how dynamo action depends on stellar parameters and stellar structure. Nevertheless, the lack of spatial resolution and the limited time extension of stellar data pose limitations to our understanding of stellar cycles and the possibility to constrain dynamo models. I briefly review some results obtained from disc-integrated proxies of stellar magnetic fields and discuss the new opportunities opened by space-borne photometry, made available by MOST, CoRoT, Kepler, and GAIA, and by new ground-based spectroscopic or spectropolarimetric observations. Stellar cycles have a significant impact on the energetic output and circumstellar magnetic fields of late-type active stars which affects the interaction between stars and their planets. On the other hand, a close-in massive planet could affect the activity of its host star. Recent observations provide circumstantial evidence of such an interaction with possible consequences for stellar activity cycles.Comment: 10 pages, Invited paper at the IAU Symposium 264, held during the 2009 IAU General Assembly in Rio de Janeiro, Brasil, from 3 to 7 August 2009; Editors: A. H. Andrei, A. G. Kosovichev and J.-P. Rozelo

    Modelling the time variation of the surface differential rotation in AB Doradus and LQ Hydrae

    Full text link
    Sequences of Doppler images of the young, rapidly rotating late-type stars AB Dor and LQ Hya show that their equatorial angular velocity and the amplitude of their surface differential rotation vary versus time. Such variations can be modelled to obtain information on the intensity of the azimuthal magnetic stresses within stellar convection zones. We introduce a simple model in the framework of the mean-field theory and discuss briefly the results of its application to those solar-like stars.Comment: 4 pages, 1 figures, accepted by Astronomical Notes (Astronomische Nachrichten

    Comparing the performance of stellar variability filters for the detection of planetary transits

    Full text link
    We have developed a new method to improve the transit detection of Earth-sized planets in front of solar-like stars by fitting stellar microvariability by means of a spot model. A large Monte Carlo numerical experiment has been designed to test the performance of our approach in comparison with other variability filters and fitting techniques for stars of different magnitudes and planets of different radius and orbital period, as observed by the space missions CoRoT and Kepler. Here we report on the results of this experiment.Comment: 4 pages, 3 postscript figures, Transiting Planets Proceeding IAU Symposium No.253, 200

    Modelling solar-like variability for the detection of Earth-like planetary transits. I. Performance of the three-spot modelling and harmonic function fitting

    Full text link
    We present a comparison of two methods of fitting solar-like variability to increase the efficiency of detection of Earth-like planetary transits across the disk of a Sun-like star. One of them is the harmonic fitting method that coupled with the BLS detection algorithm demonstrated the best performance during the first CoRoT blind test. We apply a Monte Carlo approach by simulating a large number of light curves of duration 150 days for different values of planetary radius, orbital period, epoch of the first transit, and standard deviation of the photon shot noise. Stellar variability is assumed in all the cases to be given by the Total Solar Irradiance variations as observed close to the maximum of solar cycle 23. After fitting solar variability, transits are searched for by means of the BLS algorithm. We find that a model based on three point-like active regions is better suited than a best fit with a linear combination of 200 harmonic functions to reduce the impact of stellar microvariability provided that the standard deviation of the noise is 2-4 times larger than the central depth of the transits. On the other hand, the 200-harmonic fit is better when the standard deviation of the noise is comparable to the transit depth. Our results show the advantage of a model including a simple but physically motivated treatment of stellar microvariability for the detection of planetary transits when the standard deviation of the photon shot noise is greater than the transit depth and stellar variability is analogous to solar irradiance variations.Comment: 8 pages, 6 figures, accepted by Astronomy & Astrophysic

    FEA_LAB2

    Get PDF

    FEA_LESSONS_TIMETABLE_08_11_2011

    Get PDF

    INM_8_4

    Get PDF

    INM_LAB2_EXb

    Get PDF

    INM_8_2

    Get PDF

    FEA_HOMEWORK

    Get PDF
    • …
    corecore