UNIVERSITY OF BOLOGNA - FACULTY OF ENGINEERING
 INTERNATIONAL MASTER CORSE IN CIVIL ENGINEERING 2011/2012 INTRODUCTION TO NUMERICAL METHODS

LAB2b: NON-LINEAR EQUATIONS

In Matlab, find the roots (or zeros) of the following non-linear equations:

$$
\begin{aligned}
& f_{a}(x)=x^{2}-2 x+3 x=0 \\
& f_{b}(x)=\ln (3 x)=0
\end{aligned}
$$

by using the regula falsi (or false position) iterative method. To this purpose:
a) Create two M-files fa.m and fb.m containing the Matlab functions $f a$ and $f b$ implementing, respectively, the two mathematical functions f_{a} and f_{b}.
b) Create the M -file regulafalsi.m containing the Matlab function regulafalsi implementing the regula falsi root-finding method. The function must take as inputs the name of the function, the lower and upper extremes of the initial interval bracketing the root and the number of iterations to be performed, and must return as output a column vector containing the root approximations obtained by iterating the method. The first line of the M -file will be:
function $x=$ regulafalsi(fun, a, b, nit $)$
c) Create an M-file nonlinear.m containing a Matlab script (the main program) that asks the user the name of the function, the initial interval and the number of iterations, then call the function regulafalsi and, finally, write in the Command Window and plot the array of root approximations. The first lines of the script will be:
clear all; close all; clc;
funname = input('name of the function: ','s');
a = input('lower extreme of the initial interval: ');

Before running the script, use the function funplot (LAB2a) to plot the two functions f_{a} and f_{b} and choose the initial intervals bracketing the roots.

After running the script, what about the rate of convergence of the regula falsi method?

