
Finite Elements - Homework

1. Nearly Incompressible Linear Elasticity

Let Ω := (0, 1) × (0, 1). Consider the displacement formulation of the isotropic, homogeneous,
linear elasticity problem: findu such that











2µ div(∇su) + λ∇(divu) + f = 0 in Ω ,

u = 0 onΓD ,

(2µ∇su+ λ(divu)I)n = 0 onΓN ,

(1)

whereµ andλ are the Lamé’s constants,f is a given load density,ΓD = {0}× (0, 1)∪ (0, 1)×{0}
(left vertical and lower horizontal sides) andΓN = {1} × (0, 1) ∪ (0, 1) × {1} (right vertical and
upper horizontal sides). Recall that∇s denotes the symmetric gradient andI is the second-order
identity tensor.

Setµ = 0.5 andf = [1, 1]. DefineV := H1

ΓD
(Ω)2. The variational formulation of problem (1)

reads as follows: find∈V such that, for allv ∈ V ,

2µ

∫

Ω

∇su : ∇sv dx + λ

∫

Ω

(divu)(divv) dx =

∫

Ω

f · v dx . (2)

Introducing the new variablep := λdivu, problem (1) can be written as follows: find(u, p) such
that























2µ div(∇su) +∇p+ f = 0 in Ω ,

divu−
1

λ
p = 0 in Ω ,

u = 0 onΓD ,

(2µ∇su+ λ(divu)I)n = 0 onΓN .

(3)

DefineQ := L2(Ω). The variational formulation of problem (3) is: find(u, p) ∈ V ×Q such that,
for all (v, q) ∈ V ×Q,











2µ

∫

Ω

∇su : ∇sv dx+

∫

Ω

p divv dx =

∫

Ω

f · v dx ,
∫

Ω

divu q dx−
1

λ

∫

Ω

p q dx = 0 .
(4)

(a) Implement inFreeFem++ a discretization of the variational formulation (2) with continu-
ous linear elements with structured meshesTh=square(n,n,...), with n=16, n=32 and
n=64, forλ = 10, λ = 104 andλ = 107; plot the first and second components of the computed
displacementuh separately, the mesh after displacement (usemovemesh) and report the norm
of the computed displacement vectoruh at the point(1, 1). [Hint: modifylame.edp.]

(b) Implement inFreeFem++ a discretization of the variational formulation (4) withP b
1 − P c

1

elements with structured meshes withn=4, n=8, n=16, n=32 andn=64, for λ = 107; plot
the first and second components of the computed displacementuh separately, the mesh after
displacement and report the norm of the computed displacement vectoruh at the point(1, 1).
[Hint: modifystokes.edp.]

(c) For the analytical solutionu, u(1, 1) ≃ 0.1866. Observe that the error|u(1, 1) − uh(1, 1)|
decreases to zero linearly inh.

(d) Run theFreeFem++ code of (b) withP2−P c
1 ,P2−P d

1 andP1−P0 elements, and compare the
obtained discrete solutions with those obtained in (a) and in (b). Which methods are affected
by numerical locking?
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2. Membrane problem in mixed form

LetΩ := (0, 1)× (0, 1) and let the usual variational spaces

Σ = Hdiv(Ω) , U = L2(Ω) .

Consider the following problem (in variational form) of theelastic membrane in mixed form.

Findσ ∈ Σ, u ∈ U such that














∫

Ω

σ · τ dx+

∫

Ω

(divτ) u dx = 0 ∀τ ∈ Σ ,

∫

Ω

(divσ) v = −

∫

Ω

f v dx ∀v ∈ U .

(5)

wheref(x, y) = 1 is a given loading function and where we assume the material tensorK equal to
the identity.

(a) Implement inFreeFem++ a discretization of the variational formulation (5) with structured
meshesTh=square(n,n,...), with n=8, n=16, n=32 andn=64, using the Raviart-
Thomas element (as already done in the laboratory class).

(b) Implement inFreeFem++ a discretization of the variational formulation (5) with the same
structured meshes introduced above, but using the discretespaces

Σh = {τh ∈ [C0(Ω)]2 such thatτh|K ∈ P2 ∀K ∈ Th}

Uh = {vh ∈ U such thatvh|K ∈ P0 ∀K ∈ Th} .

Note that above we are requiring the functions ofΣh to be continuous inall components.

Compare the plots (and values) of the discrete stressesσh with the results obtained with the
Raviart-Thomas element. Is the behavior of this second element satisfactory? If not, what is
the cause of such bad behavior?

(c) Implement inFreeFem++ a discretization of the variational formulation (5) with the same
structured meshes introduced above, but using the discretespaces

Σh = {τh ∈ [C0(Ω)]2 such thatτh|K ∈ P1 ∀K ∈ Th}

Uh = {vh ∈ U such thatvh|K ∈ P0 ∀K ∈ Th} .

Compare the plots (and values) of the discrete stressesσh with the results obtained with the
Raviart-Thomas element. Is the behavior of this second element satisfactory? If not, what is
the cause of such bad behavior?


