Finite Elements - Homework

1. Nearly Incompressible Linear Elasticity

Let $\Omega:=(0,1) \times(0,1)$. Consider the displacement formulation of the isotropic, homogeneous, linear elasticity problem: find u such that

$$
\begin{cases}2 \mu \operatorname{div}\left(\nabla^{s} u\right)+\lambda \nabla(\operatorname{div} u)+f=0 & \text { in } \Omega \tag{1}\\ u=0 & \text { on } \Gamma_{D} \\ \left(2 \mu \nabla^{s} u+\lambda(\operatorname{div} u) \mathbb{I}\right) n=0 & \text { on } \Gamma_{N}\end{cases}
$$

where μ and λ are the Lamé's constants, f is a given load density, $\Gamma_{D}=\{0\} \times(0,1) \cup(0,1) \times\{0\}$ (left vertical and lower horizontal sides) and $\Gamma_{N}=\{1\} \times(0,1) \cup(0,1) \times\{1\}$ (right vertical and upper horizontal sides). Recall that ∇^{s} denotes the symmetric gradient and \mathbb{I} is the second-order identity tensor.
Set $\mu=0.5$ and $f=[1,1]$. Define $V:=H_{\Gamma_{D}}^{1}(\Omega)^{2}$. The variational formulation of problem (1) reads as follows: find $\in V$ such that, for all $v \in V$,

$$
\begin{equation*}
2 \mu \int_{\Omega} \nabla^{s} u: \nabla^{s} v d x+\lambda \int_{\Omega}(\operatorname{div} u)(\operatorname{div} v) d x=\int_{\Omega} f \cdot v d x \tag{2}
\end{equation*}
$$

Introducing the new variable $p:=\lambda \operatorname{div} u$, problem (1) can be written as follows: find (u, p) such that

$$
\begin{cases}2 \mu \operatorname{div}\left(\nabla^{s} u\right)+\nabla p+f=0 & \text { in } \Omega \tag{3}\\ \operatorname{div} u-\frac{1}{\lambda} p=0 & \text { in } \Omega \\ u=0 & \text { on } \Gamma_{D} \\ \left(2 \mu \nabla^{s} u+\lambda(\operatorname{div} u) \mathbb{I}\right) n=0 & \text { on } \Gamma_{N}\end{cases}
$$

Define $Q:=L^{2}(\Omega)$. The variational formulation of problem (3) is: find $(u, p) \in V \times Q$ such that, for all $(v, q) \in V \times Q$,

$$
\left\{\begin{array}{l}
2 \mu \int_{\Omega} \nabla^{s} u: \nabla^{s} v d x+\int_{\Omega} p \operatorname{div} v d x=\int_{\Omega} f \cdot v d x \tag{4}\\
\int_{\Omega} \operatorname{div} u q d x-\frac{1}{\lambda} \int_{\Omega} p q d x=0
\end{array}\right.
$$

(a) Implement in FreeFem ++ a discretization of the variational formulation (2) with continuous linear elements with structured meshes Th=square (n, n, \ldots), with $n=16, n=32$ and $\mathrm{n}=64$, for $\lambda=10, \lambda=10^{4}$ and $\lambda=10^{7}$; plot the first and second components of the computed displacement u_{h} separately, the mesh after displacement (use movemesh) and report the norm of the computed displacement vector u_{h} at the point $(1,1)$. [Hint: modify lame.edp.]
(b) Implement in FreeFem ++ a discretization of the variational formulation (4) with $P_{1}^{b}-P_{1}^{c}$ elements with structured meshes with $n=4, n=8, n=16, n=32$ and $n=64$, for $\lambda=10^{7}$; plot the first and second components of the computed displacement u_{h} separately, the mesh after displacement and report the norm of the computed displacement vector u_{h} at the point $(1,1)$. [Hint: modify stokes.edp.]
(c) For the analytical solution $u, u(1,1) \simeq 0.1866$. Observe that the error $\left|u(1,1)-u_{h}(1,1)\right|$ decreases to zero linearly in h.
(d) Run the FreeFem + + code of (b) with $P_{2}-P_{1}^{c}, P_{2}-P_{1}^{d}$ and $P_{1}-P_{0}$ elements, and compare the obtained discrete solutions with those obtained in (a) and in (b). Which methods are affected by numerical locking?

2. Membrane problem in mixed form

Let $\Omega:=(0,1) \times(0,1)$ and let the usual variational spaces

$$
\Sigma=H_{\mathrm{div}}(\Omega), \quad U=L^{2}(\Omega)
$$

Consider the following problem (in variational form) of the elastic membrane in mixed form.
Find $\sigma \in \Sigma, u \in U$ such that

$$
\left\{\begin{array}{l}
\int_{\Omega} \sigma \cdot \tau d x+\int_{\Omega}(\operatorname{div} \tau) u d x=0 \quad \forall \tau \in \Sigma \tag{5}\\
\int_{\Omega}(\operatorname{div} \sigma) v=-\int_{\Omega} f v d x \quad \forall v \in U
\end{array}\right.
$$

where $f(x, y)=1$ is a given loading function and where we assume the material tensor \mathbb{K} equal to the identity.
(a) Implement in FreeFem ++ a discretization of the variational formulation (5) with structured meshes $T h=\operatorname{square}(n, n, \ldots)$, with $n=8, n=16, n=32$ and $n=64$, using the RaviartThomas element (as already done in the laboratory class).
(b) Implement in FreeFem ++ a discretization of the variational formulation (5) with the same structured meshes introduced above, but using the discrete spaces

$$
\begin{aligned}
& \Sigma_{h}=\left\{\tau_{h} \in\left[C^{0}(\Omega)\right]^{2} \text { such that }\left.\tau_{h}\right|_{K} \in P_{2} \forall K \in \mathcal{T}_{h}\right\} \\
& U_{h}=\left\{v_{h} \in U \text { such that }\left.v_{h}\right|_{K} \in P_{0} \forall K \in \mathcal{T}_{h}\right\}
\end{aligned}
$$

Note that above we are requiring the functions of Σ_{h} to be continuous in all components.
Compare the plots (and values) of the discrete stresses σ_{h} with the results obtained with the Raviart-Thomas element. Is the behavior of this second element satisfactory? If not, what is the cause of such bad behavior?
(c) Implement in FreeFem ++ a discretization of the variational formulation (5) with the same structured meshes introduced above, but using the discrete spaces

$$
\begin{aligned}
& \Sigma_{h}=\left\{\tau_{h} \in\left[C^{0}(\Omega)\right]^{2} \text { such that }\left.\tau_{h}\right|_{K} \in P_{1} \forall K \in \mathcal{T}_{h}\right\} \\
& U_{h}=\left\{v_{h} \in U \text { such that }\left.v_{h}\right|_{K} \in P_{0} \forall K \in \mathcal{T}_{h}\right\}
\end{aligned}
$$

Compare the plots (and values) of the discrete stresses σ_{h} with the results obtained with the Raviart-Thomas element. Is the behavior of this second element satisfactory? If not, what is the cause of such bad behavior?

