23 research outputs found

    Estradiol inhibits the effects of extracellular ATP in human sperm by a non genomic mechanism of action

    Get PDF
    Steroid hormones, beside their classical genomic mechanism of action, exert rapid, non genomic effects in different cell types. These effects are mediated by still poorly characterized plasma membrane receptors that appear to be distinct from the classic intracellular receptors. In the present study we evaluated the non genomic effects of estradiol (17βE2) in human sperm and its effects on sperm stimulation by extracellular ATP, a potent activator of sperm acrosome reaction. In human sperm 17βE2 induced a rapid increase of intracellular calcium (Ca2+) concentrations dependent on an influx of Ca2+ from the extracellular medium. The monitoring of the plasma membrane potential variations induced by 17βE2 showed that this steroid induces a rapid plasma membrane hyperpolarization that was dependent on the presence of Ca2+ in the extracellular medium since it was absent in Ca2+ free-medium. When sperm were pre-incubated in the presence of the K+ channel inhibitor tetra-ethylammonium, the 17βE2 induced plasma membrane hyperpolarization was blunted suggesting the involvement of K+ channels in the hyperpolarizing effects of 17βE2. Extracellular ATP induced a rapid plasma membrane depolarization followed by acrosome reaction. Sperm pre-incubation with 17βE2 inhibited the effects of extracellular ATP on sperm plasma membrane potential variations and acrosome reaction. The effects of 17βE2 were specific since its inactive steroisomer 17αE2 was inactive. Furthermore the effects of 17βE2 were not inhibited by tamoxifen, an antagonist of the classic 17βE2 intracellular receptor

    An integrated view of theiInfluence of temperature, pressure, and humidity on the stability of trimorphic cysteamine hydrochloride

    Get PDF
    Understanding the phase behavior of pharmaceuticals is important for dosage form development and regulatory requirements, in particular after the incident with ritonavir. In the present paper, a comprehensive study of the solid-state phase behavior of cysteamine hydrochloride used in the treatment of nephropathic cystinosis and recently granted orphan designation by the European Commission is presented employing (high-pressure) calorimetry, water vapor sorption, and X-ray diffraction as a function of temperature. A new crystal form (I2/a, form III) has been discovered, and its structure has been solved by X-ray powder diffraction, while two other crystalline forms are already known. The relative thermodynamic stabilities of the commercial form I and of the newly discovered form III have been established; they possess an overall enantiotropic phase relationship, with form I stable at room temperature and form III stable above 37 degrees C. Its melting temperature was found at 67.3 +/- 0.5 degrees C. Cysteamine hydrochloride is hygroscopic and immediately forms a concentrated saturated solution in water with a surprisingly high concentration of 47.5 mol % above a relative humidity of 35%. No hydrate has been observed. A temperature composition phase diagram is presented that has been obtained with the unary pressure temperature phase diagram, measurements, and calculations. For development, form I would be the best form to use in any solid dosage form, which should be thoroughly protected against humidity.Postprint (author's final draft

    Cyclodextrins and ternary complexes: technology to improve solubility of poorly soluble drugs

    Get PDF
    Cyclodextrins (CDs) are cyclic oligosaccharides composed of D-glucopyranoside units linked by glycosidic bonds. Their main property is the ability to modify the physicochemical and biological characteristics of low-soluble drugs through the formation of drug:CD inclusion complexes. Inclusion complexation requires that host molecules fit completely or partially within the CD cavity. This adjustment is directly related to the physicochemical properties of the guest and host molecules, easy accommodation of guest molecules within the CD cavity, stoichiometry, therapeutic dose, and toxicity. However, dosage forms may achieve a high volume, depending on the amount of CD required. Thus, it is necessary to increase solubilization efficiency in order to use smaller amounts of CD. This can be achieved by adding small amounts of water-soluble polymers to the system. This review addresses aspects related to drug complexation with CDs using water-soluble polymers to optimize the amount of CD used in the formulation in order to increase drug solubility and reduce dosage form volume.Ciclodextrinas (CDs) são oligossacarídeos cíclicos, compostos por unidades D-glicopiranosídicas ligadas entre si por meio de ligações glicosídicas e sua principal propriedade está na capacidade de alterar as características físico-químicas e biológicas de fármacos com baixa solubilidade por meio da formação de complexos de inclusão fármaco:CD. Para a formação dos complexos de inclusão a molécula hospedeira necessita ajustar-se total ou parcialmente no interior da cavidade da CD, onde este ajuste está diretamente ligado a propriedades físico-químicas da molécula hóspede e hospedeira, facilidade de alojamento da molécula hóspede no interior da cavidade da CD, estequiometria, dose terapêutica e toxicidade. No entanto, as formas farmacêuticas podem atingir um elevado volume, em função da quantidade de CD requerida, sendo necessário aumentar sua eficiência de solubilização para que seja possível utilizar menores quantidades das mesmas. Isso pode ser obtido com a inclusão de pequenas quantidades de polímeros hidrossolúveis ao sistema. Nessa revisão, são abordados aspectos relacionados à complexação de fármacos com ciclodextrinas empregando-se polímeros hidrossolúveis para otimização da quantidade de CD utilizada na formulação, com a finalidade de aumentar a solubilidade do fármaco e reduzir o volume das preparações

    New approach for pre-formulation of an oral cyclosporine,” Digest

    No full text
    Development of new oral cyclosporine formulation using cyclodextrin tetrapolymer (P-αβγ-CD) in attempt to enhance its stability and dissolution rate.Two spray-dried dispersion formulations containing poorly water-soluble cyclosporine (CsA) were prepared with cyclodextrin tetrapolymer in water (F H2O ) and ethanol (F EOH ) then characterized by scanning electron microscopy, powder X-ray diffraction, particle size distribution, circular dichroism and nuclear magnetic resonance (NMR) along with the dissolution study which was compared to Neoral® and Sandimmune®. The physicochemical characterization studies showed an interaction between cyclosporine and P-αβγ-CD without secondary structure changes of cyclosporine. The order of cyclosporine release was as follows: (F H2O ) = Neoral® ˃ (F EOH ) ˃ Sandimmune®. The results could be explained by hydrophylisation and absence of crystallinity of cyclosporine. In conclusion, F H2O formulation revealed similar dissolution profile as Neoral® and better than Sandimmune®

    Effect of cyclodextrins on lonidamine release and in-vitro cytotoxicity

    No full text
    International audienc
    corecore